Intervertebral disc cells exist in a challenging physiological environment. Disc degeneration occurs early in life implying that disc cells may no longer be able to maintain a functional tissue. We hypothesise that disc cells have a stress response different from most other cells because of the disc environment. We have compared the stress response of freshly isolated and cultured bovine nucleus pulposus (NP) cells with bovine dermal fibroblasts, representative of cells from a vascularised tissue. Freshly isolated and passaged bovine NP cells and dermal fibroblasts were cultured for 3 days then subjected to either thermal stress at 45°C for 1h followed by recovery times of 6, 24 and 48h or nutrient stress involving culture without serum for 6, 24 and 48 h. At each time point, cell number and viability were assessed and heat shock protein 70 (Hsp70) measured in cell lysates by an enzyme-linked immunosorbent assay.Background
Methods
Proteoglycans (PGs) have long been known to be important to the functioning of the intervertebral disc. The most common PG is aggrecan, but there are also small leucine-rich proteoglycans (SLRPs) which constitute only a small percentage of the total PGs. However, they have many important functions, including organising the collagen, protecting it from degradation and attracting growth factors to the disc. We have examined how the core proteins of these molecules vary in intervertebral discs from patients with different pathologies. Discs were obtained from patients with scoliosis (n=7, 19–53y), degenerative disc disease (DDD) (n=6, 35–51y) and herniations (n=5, 33–58y). Proteoglycans were extracted and the SLRPs (biglycan, decorin, fibromodulin, keratocan and lumican) were characterised via Western blotting following enzymatic digestion with chondroitinase ABC and keratanase.Background
Methods
16 patients benefited greatly from the surgery and 6 benefited to some extent, giving an overall good result of 71%. 7 patients had no or little relief from surgery (29%). Moderate to severe degenerate changes in SC and IC joints on histology were found in 59% of patients. 91.6 % of these patients did well with surgery. Only 60 % of those with mild changes did well. Discography was possible in five out of six attempted cases. Two were positive and both did well from surgery. Three patients had negative discographies and two of them had a poor result and one had only some relief.
Four male patients aged 33, 44, 45 and 52 years, who had undergone different spinal stabilisation procedures consisting of flexible stabilisation (DNESYS), posterior instrumented fusion, and anterior interbody fusion with facet fixation were investigated. Images were acquired and analysed in the same way except that a larger number of images (500 per screening) was utilised in each case. Four operated levels and 2 adjacent levels were analysed. All motion patterns were easily distinguishable from those of the normal subjects. The PLIF and DYNESYS stabilisations demonstrated no motion at the instrumented levels. The anterior inter-body fusion-transfacet fixation patient was shown to have developed a pseudarthrosis.
Registration of the images of each vertebra by templates which are automatically tracked and whose output is converted to inter-vertebral kinematic parameters and averaged for display and reporting. Results are currently displayed as inter-vertebral angles throughout the motion that indicate whether or not solid fusion has been achieved. The Instrument Measurement Error is quantifiable and will vary with image quality, but can be improved by averaging. The technology is applicable to any imaging system of sufficient speed and resolution and may, for example, be used with MR in the future.
We have used a sheep model of intervertebral disc degeneration to monitor the presence and organisation of nerves in the disc as degeneration progresses. This model has been used to study morphological and bio-chemical changes of the disc as it degenerates, in addition to associated alterations in end-plate vascularity and vertebral bone remodelling. One aspect of this model which has not been studied to date is how the innervation of the disc may change with the onset of degeneration. This is the object of the present study.
Radiological investigations revealed that all patients had evidence of facet arthrosis. Seven patients had degenerative spondylolisthesis. Degenerative disc disease was also seen in 7 patients. The contents of the cysts varied from serous fluid to chalky white material to gelatinous grey material. One cyst contained calcium pyrophosphate crystals. Another cyst contained hydroxyapatite crystals. Seven cysts which contained deposition of bone debris in the cyst wall also revealed an (giant cell and macrophage) inflammatory reaction to this bone debris. In all patients complete resolution of sciatica, neurologic claudication and neurologic deficit was observed after surgery. However, after a minimum follow up of two years the back pain persisted in all but one patient.
Mature human intervertebral disc cells have generally been described as being either fibroblast-like or chondrocyte-like; i.e. appearing either elongated and bipolar or rounded/oval. Fibroblast-like cells are observed within the outer regions of the anulus fibrosus whilst chondrocyte-like cells are found in the more central regions of the disc. However, a few reports have noted that in some circumstances disc cells appear to extend more elaborate cytoplasmic processes into their surrounding extracellular matrix. In this study, we have examined healthy and pathological human intervertebral discs for the presence of the cytoskeletal elements, F-actin and vimentin. Tissues examined included discs of no known pathology, discs with spondylolithesis, scoliosis specimens taken from the convex and concave sides, and degenerated discs. F-actin was not readily observed within discs cells but was a marked feature of vascular tissue within the disc and occasionally seen in infiltrating cells. Vimentin was more readily seen within cells of the inner anulus fibrosus and nucleus pulposus. In general, disc cell morphology was fibrocyte or chondrocyte-like; however, in spondylolisthetic discs, cells with numerous cytoplasmic projections were frequently observed. The differential morphologies and cytoskeletal composition observed in disc cells may be indicative of variations in mechanical strains and/or pathologies, or indeed of cell function.
The aim of this study was to identify potential inflammatory mediators in herniated and non-herniated intervertebral disc. It has been suggested that inflammation of the nerve root is a pre-requisite for disc herniations to be symptomatic. What leads to this inflammation is a matter of conjecture; one possible cause may be inflammatory mediators released from the herniated disc tissue itself. In this study we have examined discs from individuals with and without disc herniations to determine if there is a different degree of occurrence. Twenty two discs from 21 patients with disc herniation were examined together with four discs from patients with other disc disorders and five age-matched discs from individuals obtained at autopsy. Samples were studied for the presence of blood vessels and inflammatory cytokines: IL-1α and β, IL-6, INOS, MCP1, TNFα, TSG-6 and thromboxane. Of the herniated discs 10 were protrusions, six extrusions and six sequestrations. There was less of all the cytokines in the non-herniated discs than found in the herniated, with very little immunostaining for iNOS or IL-1α in any samples. Staining was seen in all herniated samples for IL-1β, but in fewer for IL-six and MCP1 (86%), thromboxane (68%), TNFα (64%) and TSG-6 (59%). The presence of cytokines was strongly associated with the presence of blood vessels. Protruded discs had less TNFα and thromboxane than sequestrated or extruded discs. Cytokines appear to play an active role in the aetiopathogenesis of disc herniations. Some may be involved in the stimulation of degradative enzymes and hence resorption of, for example, sequestrations, whereas others may be responsible for an inflammatory response in the surrounding tissues such as nerve roots.
Although an increased and deeper innervation of painful and degenerate intervertebral discs (IVDs) has been reported, the mechanisms that regulate nerve growth into the IVD are largely unknown. In other tissues, proteoglycans have been found to act as nerve guidance molecules that, generally speaking, inhibit nerve growth. As disc degeneration is characterised by a loss of proteoglycans, we assessed the effects of IVD proteoglycans on nerve growth and guidance. Using in vitro assays of nerve growth, we found that human disc proteoglycans inhibited nerve attachment, neurite extension and induced sensory growth cone turning in a dose-dependent manner. Digestions with chondroitinase ABC or keratinase abrogated these inhibitory effects. Proteoglycans of the anulus fibrosus were more inhibitory than those from the nucleus pulposus. Disc proteoglycans inhibit nerve growth and this inhibitory activity may dependent on proteoglycan glycosylation and/or sulfation. A loss of proteoglycans from degenerative discs may therefore predispose the discs to nerve invasion.