Periprostetic joint infections (PJI) are often difficult to diagnose, to treat and often leave the patient with severe impaired function. The presence of low virulent bacteria is frequently discovered in apparent aseptic revisions of shoulder arthroplasties and pose a challenge to diagnose preoperatively. Dual Isotope In111 Leucocyte/ Tc99 Bone Marrow SPECT CT scan (L/BMS) is considered the radionuclide gold standard in preoperative diagnosing PJI with reported high specificity and sensitivity in hip and knee arthroplasties. Unfortunately, it is labour-intensive and expensive to perform and documentation using L/BMS on shoulder arthroplasties lack. To investigate if L/BMS succeeds in detecting shoulder PJI compared to tissue cultures obtained perioperatively.Background
Aim
Intermittent administration of parathyroid hormone (PTH) is bone anabolic and improves fracture healing. As adjuvant in implant surgery PTH has only recently been introduced experimentally predominantly showing improved implant integration within empty peri-implant bone defects. Given the desire to improve the graft incorporation process, the purpose of our study is to examine whether PTH improves early implant integration by accelerating healing of peri-implant bone allograft. We test the hypothesis that systemic intermittent administration of PTH increases new bone formation in allograft inserted in a gap with impacted morselized bone allograft around an experimental orthopaedic implant. We hypothesize that parathyroid hormone will improve new bone formation in allograft and preserve allograft.
Parathyroid hormone (PTH) is a regulator of bone metabolism. When PTH is administered intermittently it induces strong anabolic effect by increasing osteoblastic activity. Our understanding of PTH is mainly based on research on osteoporosis, in which bone formation is known to be coupled to the bone resorption. In the orthopaedic situation of a joint replacement other conditions apply. We therefore find it of interest to examine PTH’s role as an adjuvant in implant surgery. We examine the effect of PTH on the osseointegration of an experimental orthopaedic implant in which the implant due to insertion initiates a bone repair in the implant bed. We hypothesize that parathyroid hormone will improve the bone ongrowth at the bone-implant interface.
In the peri-centric region the tissue fraction for PTH was 0,238 (0,211–0,276) for bone, 0,752 (0,724–0,785) for marrow and 0 (0–0,007) for fibrous tissue, as for control 0,223 (0,201–0,235) for bone, 0,777 (0,765–0,799) for marrow and 0 (0–0) for fibrous tissue.