Symptomatic spinal stenosis is a very common problem, and decompression surgery has been shown to be superior to nonoperative treatment in selected patient groups. However, performing an instrumented fusion in addition to decompression may avoid revision and improve outcomes. The aim of the SpInOuT feasibility study was to establish whether a definitive randomized controlled trial (RCT) that accounted for the spectrum of pathology contributing to spinal stenosis, including pelvic incidence-lumbar lordosis (PI-LL) mismatch and mobile spondylolisthesis, could be conducted. As part of the SpInOuT-F study, a pilot randomized trial was carried out across five NHS hospitals. Patients were randomized to either spinal decompression alone or spinal decompression plus instrumented fusion. Patient-reported outcome measures were collected at baseline and three months. The intended sample size was 60 patients.Aims
Methods
This multi-centre randomised controlled trial evaluated the clinical and cost effectiveness of liposomal bupivacaine for pain and recovery following knee replacement. 533patients undergoing primary knee replacement were randomised to receive either liposomal bupivacaine (266mg) plus bupivacaine hydrochloride (100mg) or control (bupivacaine hydrochloride 100mg), administered at the surgical site. The co-primary outcomes were pain visual analogue score (VAS) area under the curve (AUC) 6 to 72hours and the Quality of Recovery 40 (QoR-40) score at 72hours.Abstract
Introduction
Methodology
The aims of this study were to compare the use of resources, costs, and quality of life outcomes associated with subacromial decompression, arthroscopy only (placebo surgery), and no treatment for subacromial pain in the United Kingdom National Health Service (NHS), and to estimate their cost-effectiveness. The use of resources, costs, and quality-adjusted life-years (QALYs) were assessed in the trial at six months and one year. Results were extrapolated to two years after randomization. Differences between treatment arms, based on the intention-to-treat principle, were adjusted for covariates and missing data were handled using multiple imputation. Incremental cost-effectiveness ratios were calculated, with uncertainty around the values estimated using bootstrapping.Aims
Patients and Methods
A trial-based comparison of the use of resources, costs and quality
of life outcomes of arthroscopic and open surgical management for
rotator cuff tears in the United Kingdom NHS was performed using
data from the United Kingdom Rotator Cuff Study (UKUFF) randomised
controlled trial. Using data from 273 patients, healthcare-related use of resources,
costs and quality-adjusted life years (QALYs) were estimated at
12 months and 24 months after surgery on an intention-to-treat basis
with adjustment for covariates. Uncertainty about the incremental
cost-effectiveness ratio for arthroscopic Aims
Patients and Methods
With a strong political agenda for change towards patient-centred healthcare, the notion of shared decision-making is reported to substantially improve patient experience, adherence to treatment and health outcomes. In clinical practice however, observational studies have shown shared decision-making is rarely implemented and patient preferences are seldom met. The aim of this study was to measure the extent of shared decision-making in clinical encounters involving physiotherapists and patients with low back pain. Eighty outpatient encounters (from 12 clinicians) were observed, audio-recorded, transcribed verbatim and analysed using the OPTION instrument. This measures 12 decision-making items, rated on a scale 0–4, which are summated and scaled to give a percentage: The higher the score, the greater the shared decision-making competency. The mean OPTION score was 24.0% (range 10.4%–43.8%). Providing patients with a list of treatment options was the only behaviour exhibited by every clinician, however in 73.8%, this was not demonstrated beyond a perfunctory level. Failure to offer the choice of doing nothing, or deferring the decision precluded clinicians from attaining a higher OPTION score.Purpose of the Study and Background
Methods and Results
Despite the development of skeletal or mesenchymal stem cell (MSC) constructs aimed at creating viable cartilage and bone, few studies have examined the effects of cytokines present in rheumatoid arthritis (RA) and osteoarthritis (OA) synovial tissues, or inhibition of these, on such constructs. This work addresses these issues using both in vitro and in vivo approaches and examines potential ways of overcoming the effects of cytokines on the integrity of cartilage and bone constructs. Synovial samples were obtained from RA or OA (n=10) patients undergoing elective hip or knee arthroplasty at Southampton General Hospital. Full ethical approval was obtained. Control bone marrow-derived stromal cells were obtained from patients undergoing emergency fractured neck of femur repair, cultured in basal, osteogenic (ascorbate and dexamethasone) and chondrogenic (transforming growth factor beta (TGFbeta3)) conditions. Differentiation towards bone and cartilage was assessed using alkaline phosphatase (ALP) staining, ALP and DNA biochemical assays and analysis of osteogenic/chondrogenic gene expression using real time polymerase chain reaction (rt-PCR). Exogenous interleukin-1 (IL-1) (10ng/mL), tumour necrosis factor alpha (TNFalpha) (10ng/mL) or interleukin-6 (IL-6) (100ng/mL) was added and effects on differentiation noted. RA and OA synovial samples were digested, cultured for 48 hours then centrifuged to produce supernatants. Cytokine profiles were determined using ELISA. These supernatants were then added to MSCs and their effects on differentiation assessed. Mesenchymal cultures in osteogenic media with IL-1 showed an additive osteogenic effect on biochemical assays. TNF exerted a less marked and IL-6 no apparent effect on osteogenic differentiation. ALP expression by rt-PCR correlated with these findings. Addition of supernatants to mesenchymal cultures produced a marked osteogenic profile that was IL-1 and TNFalpha concentration dependent, correlating with lower supernatant dilutions on initial ELISA analysis. Preliminary studies indicate that exogenous IL-1 and TNFalpha modulate the osteogenic phenotype in MSCs in vitro. OA and RA synovial supernatants affect skeletal cell differentiation. Variations in cytokine profiles between supernatants require analysis for potential confounders. A larger study is underway to investigate these effects, the effects of cytokines on skeletal cell differentiation on commercially available scaffolds both in vitro and in an in vivo murine model of bone formation.
revision surgery and poor functional outcome as the end-points.
The growth plates of rapidly growing animals have been studied extensively. Nevertheless, several questions remain unanswered, partly because many events happen simultaneously, especially at the vascular front. Terminal chondrocytes are thought to undergo programmed cell death, but the fate of the cell remnants remains unclear. Are the dying cells released into the vascular space and phagocytosed by macrophages, as one would expect for apoptosis? Or are the cells eliminated prior to opening of the lacunae, leaving empty lacunae? Do all terminal chondrocytes die or do some become bone-forming cells? Rodents maintain a growth plate into old age, long after longitudinal growth has ceased. These stationary growth plates have several features not found in the growth plates of rapidly growing animals and closer study of these features may provide answers to the above questions. Femurs and tibiae from 4–16 week-old and 62–80 week-old rats were decalcified, processed into paraffin, and the morphological changes were documented. Between 4–16 weeks, the heights of the growth plates decreased due to loss of the large hypertrophic chondrocytes, but the various zones were still present. In the aged rats, the growth plates were identifiable as a narrow cartilaginous band with some short columns of inactive cells. The vascular front was irregular, the narrow spicules of primary spongiosa were absent and the much thicker spicules, which are normally seen in secondary spongiosa, directly abutted to the cartilage. Horizontal apposition of bone matrix onto the cartilage edge was frequently present. In addition, the following features were noted. 1) Acellular areas: Nearly all growth plates contained regions of cartilage from which all cells and their lacunae had disappeared. In some cases, these acellular regions stretched from the reserve zone to the vascular front and even persisted as a relatively wide core within the spicules of spongiosa, indicating increased resistance of acellular cartilage to resorption. The absence of cells or cell debris was consistent with an autophagic mode of cell death and subsequent collapse of the lacunae. 2) Remodelling within the growth plate; in some growth plates, large regions of growth plate cartilage had been resorbed and new bone had been laid down in a pattern similar to the remodelling of cortical bone. This suggested that the normal resistance of cartilage to vascular invasion had been lost locally, but was maintained in adjacent non-remodelled regions. 3) Trans-differentiation of chondrocytes to bone-forming cells; extensive new medullary bone formation was noted in the diaphysis of approximately 30% of the aged rats, suggesting that they had received an (unknown) osteogenic stimulus. In these rats, bone matrix was identifiable inside chondrocytic lacunae, and spreading beyond the confines of the lacunae, thus directly replacing growth plate cartilage with bone matrix. The results suggest that i) chondrocytes are capable of self-elimination, perhaps by a mechanism similar to the autophagic cell death that occurs during insect metamorphosis; ii) resorption of cartilage and vascular invasion requires the presence of the viable chondrocytes; and iii) chondrocytes have the capacity to transdifferentiate to bone-forming cells, but only do so when receiving an increased osteogenic stimulus.
Cohort studies in humans have suggested that the peak bone mass attained at skeletal maturity may be programmed in utero. To investigate which aspects of bone development might be influenced in utero, we utilised a rat model of maternal protein insufficiency, which has previously been used to demonstrate the fetal origin of adult hypertension. In rodents, a growth plate remains present throughout life, even after longitudinal growth ceases. Generally, the height of the growth plate is related to the rate of bone growth. Fast growing bones have maximal height growth plates, and as bone growth slows down the height decreases until it remains stationary. The aim of this study was to compare the morphology of long bones in aged rats that had been subjected to protein insufficiency in utero with that of controls. Rat dams were fed either an 18% casein control diet or a 9% casein low protein diet from conception until the end of pregnancy. The offspring were fed a normal diet until death (~72 weeks), when bone density was measured by dual energy X-ray absorptiometry (DEXA) and the tibiae and femurs were processed for histology. The offspring of rats from the low protein group had a significantly lower bone mass, as assessed by DEXA. The major differences in bone structure were found in the growth plates, which were very irregular without the usual zones of resting, proliferating and hypertrophic chondrocytes. A number of unusual cellular events were noted to have taken place subsequent to cessation of growth, including: a) elimination of all chondrocytes in a number of regions, resulting in vast acellular areas; b) formation of chondroid bone and/or transdifferentiation of chondrocytes to bone-forming cells in other regions; c) partial resorption of those latter regions while the acellular regions were not resorbed; d) ‘horizontal’ apposition of bone against a smooth metaphyseal edge of the growth plate. To compare the growth plates from the low and high protein groups semi-quantitatively, the degrees of the above features were scored. In addition, the heights of the growth plates were were assessed by two independent measurements. In the low protein group, the height of the growth plate were found to be significantly greater (p<
0.001). Additionally, the growth plates from this group of animals were observed to be more irregular with regards to all the features outlined above. These findings are consistent with the hypothesis that growth trajectory and bone mass are programmed in early life. The increased height of the growth plate in animals undernourished in utero may reflect the cessation of growth at an earlier age. The increased irregularity of the growth plate in this group of animals may infer an earlier onset of age-related changes within the growth cartilage.