Abstract
The growth plates of rapidly growing animals have been studied extensively. Nevertheless, several questions remain unanswered, partly because many events happen simultaneously, especially at the vascular front. Terminal chondrocytes are thought to undergo programmed cell death, but the fate of the cell remnants remains unclear. Are the dying cells released into the vascular space and phagocytosed by macrophages, as one would expect for apoptosis? Or are the cells eliminated prior to opening of the lacunae, leaving empty lacunae? Do all terminal chondrocytes die or do some become bone-forming cells? Rodents maintain a growth plate into old age, long after longitudinal growth has ceased. These stationary growth plates have several features not found in the growth plates of rapidly growing animals and closer study of these features may provide answers to the above questions. Femurs and tibiae from 4–16 week-old and 62–80 week-old rats were decalcified, processed into paraffin, and the morphological changes were documented.
Between 4–16 weeks, the heights of the growth plates decreased due to loss of the large hypertrophic chondrocytes, but the various zones were still present. In the aged rats, the growth plates were identifiable as a narrow cartilaginous band with some short columns of inactive cells. The vascular front was irregular, the narrow spicules of primary spongiosa were absent and the much thicker spicules, which are normally seen in secondary spongiosa, directly abutted to the cartilage. Horizontal apposition of bone matrix onto the cartilage edge was frequently present. In addition, the following features were noted. 1) Acellular areas: Nearly all growth plates contained regions of cartilage from which all cells and their lacunae had disappeared. In some cases, these acellular regions stretched from the reserve zone to the vascular front and even persisted as a relatively wide core within the spicules of spongiosa, indicating increased resistance of acellular cartilage to resorption. The absence of cells or cell debris was consistent with an autophagic mode of cell death and subsequent collapse of the lacunae. 2) Remodelling within the growth plate; in some growth plates, large regions of growth plate cartilage had been resorbed and new bone had been laid down in a pattern similar to the remodelling of cortical bone. This suggested that the normal resistance of cartilage to vascular invasion had been lost locally, but was maintained in adjacent non-remodelled regions. 3) Trans-differentiation of chondrocytes to bone-forming cells; extensive new medullary bone formation was noted in the diaphysis of approximately 30% of the aged rats, suggesting that they had received an (unknown) osteogenic stimulus. In these rats, bone matrix was identifiable inside chondrocytic lacunae, and spreading beyond the confines of the lacunae, thus directly replacing growth plate cartilage with bone matrix.
The results suggest that i) chondrocytes are capable of self-elimination, perhaps by a mechanism similar to the autophagic cell death that occurs during insect metamorphosis; ii) resorption of cartilage and vascular invasion requires the presence of the viable chondrocytes; and iii) chondrocytes have the capacity to transdifferentiate to bone-forming cells, but only do so when receiving an increased osteogenic stimulus.
Abstracts prepared by Dr P E Watkins, Hodgkin Building, Guys Campus, King’s College London.