header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 484 - 485
1 Nov 2011
Luo J Daines L Charalambous A Adams M Annesley-Williams D Dolan P
Full Access

Purpose: To determine how cement volume during vertebroplasty influences:

stress distributions on fractured and adjacent vertebral bodies,

load-sharing between the vertebral bodies and neural arch, and

cement leakage.

Methods: Nineteen thoracolumbar motion segments from 13 cadavers (42–91 yrs) were loaded to induce fracture. Fractured vertebrae received two sequential injections (VP1 and VP2) of 3.5cm3 of polymethylmethacrylate cement. Before and after each injection, motion segment stiffness was measured in compression and in bending, and the distribution of compressive “stress” in the intervertebral disc was measured in flexed and extended postures. Stress profiles yielded the intradiscal pressure (IDP), stress peaks in the posterior (SPP) annulus, and the % of the applied compressive force resisted by the neural arch (FN). Cement leakage and vertebral body volume were quantified by water-immersion, and % cement fill was estimated.

Results: Bending and compressive stiffness fell by 37% and 50% respectively following fracture, and were restored only after VP2. Depending on posture, IDP fell by 59%–85% after fracture whereas SPP increased by 107%–362%. VP1 restored IDP and SPP to prefracture values, and VP2 produced no further changes. Fracture increased FN from 11% to 39% in flexion, and from 33% to 59% in extension. FN was restored towards pre-fracture values only after VP2. Cement leakage, IDP and compressive stiffness all increased with %fill.

Conclusions: 3.5cm3 of cement largely restored normal stress distributions to fractured and adjacent vertebral bodies, but 7cm3 were required to restore load-sharing between the vertebral bodies and neural arch. Risks of cement leakage increased with %fill.

Conflicts of Interest: None

Source of Funding: This work was funded by Action Medical Research and The Hospital Saving Association Charitable Trust. Vertebroplasty materials were provided by Stryker.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 489 - 489
1 Sep 2009
Dolan P Luo J Daines L Charalambous A Annesley-Williams D Adams M
Full Access

Introduction: The aim of this cadaver study was to examine how cement volume used in vertebroplasty influences the restoration of normal load-sharing and stiffness to fractured vertebrae.

Methods: Nineteen thoracolumbar motion segments obtained from 13 spines (42–91 yrs) were compressed to failure in moderate flexion to induce vertebral fracture. Fractured vertebrae underwent two sequential vertebroplasty treatments (VP1 and VP2) each of which involved unipedicular injection of 3.5ml of polymethyl-methacrylate cement. During each injection, the volume of any cement leakage was recorded. At each stage of the experiment (pre-fracture, post-fracture, post-VP1 and post-VP2) measurements were made of motion segment stiffness, in bending and compression, and the distribution of compressive stress across the disc. The latter was measured in flexed and extended postures by pulling a pressure transducer through the mid-sagittal diameter of the disc whilst under 1.5kN load. Stress profiles indicated the intradiscal pressure (IDP), stress peaks in the posterior annulus (SPP), and neural arch compressive load-bearing (FN). Measurements obtained after VP1 and VP2 were compared with pre-fracture and post-fracture values using repeated measures ANOVA to examine the effect of cement volume (3.5 ml vs. 7 ml) on the restoration of mechanical function.

Results: Fracture reduced compressive and bending stiffness by 50% and 37% respectively (p< 0.001) and IDP by 59%–85%, depending on posture (p< 0.001). SPP increased from 0.53 to 2.46 MPa in flexion, and from 1.37 to 2.83 MPa in extension (p< 0.01). FN increased from 11% to 39% of the applied load in flexion, and from 33% to 59% in extension (p< 0.001). VP1 partially reversed the changes in IDP and SPP towards pre-fracture values but no further restoration of these parameters was found after VP2. Bending and compressive stiffness and FN showed no significant change after VP1, but were restored towards pre-fracture values by VP2. Cement leakage occurred in 3 specimens during VP1, and in 7 specimens during VP2. Leakage volumes ranged from 0.5–3.0 ml, and were larger during VP2 than VP1.

Conclusions: Unipedicular injection of 3.5 ml of cement reversed fractured induced changes in IDP and SPP, but did not affect stiffness and neural arch load-bearing. Larger injection volumes may provide some extra mechanical benefit in terms of restoring stiffness and reducing neural arch loading, but these extra mechanical benefits can be at the cost of increased risk of cement leakage.