Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 27 - 27
1 Oct 2018
Sporer S MacLean L Burger A
Full Access

Introduction

Uncemented highly porous titanium implants have been shown to promote osseointegration, and may result in a durable construct for total knee arthroplasty (TKA). Given the mixed results of uncemented TKA, it is important to evaluate the early stability for this product. The objective of the following study was to use radiostereometric analysis (RSA) to assess early fixation of a highly porous tibial baseplate and metal backed patella.

Methods

Twenty-seven patients (mean age 64 years, 30% female) undergoing primary TKA consented to participate in this prospective cohort study. All patients received a highly porous tibial baseplate, a metal backed patella and tantalum RSA bone markers. Implant migration was assessed using model-based RSA at 1.5, 3, 6, 12 and 24 months post-operative. Patient reported outcome measures were captured using the same follow-up schedule, and compared to pre-operative measures.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 48 - 48
1 Sep 2012
Gascoyne TC Petrak MJ Bohm E Turgeon T Put RVD Burger A
Full Access

Purpose

Radiostereometric Analysis (RSA) is a well developed imaging technique used to estimate implant fixation of orthopaedic implants in randomized clinical trials. The precision of RSA depends on a number of factors including image quality related to the individual modality properties. This study assesses the precision of RSA with a novel Digital Radiography (DR) system compared to a CR imaging system using different imaging techniques. Additionally, the study assesses the precision of locating beads embedded in a modified spine pedicle screw.

Method

A modified titanium spinal pedicle screw 4.5 mm diameter, 35 mm length, marked with two 1.0 mm tantalum beads, one inside the head and one near the screw tip was inserted into a bovine tibia segment. Six additional 1.0 mm tantalum beads were inserted into the bone segment – superiorly, distally and adjacent to the pedicle screw. The phantom was placed on a standard clinical diagnostic imaging bed above a custom RSA carbon fiber calibration cage (Halifax Biomedical Inc.). A pair of DR or CR imaging plates were placed below the calibration cage and irradiated 15 times at 100, 125 kV at 2.5 mAs. To determine precision, the standard deviation of 3D vector distances between beads was determined using RSA for each of the different imaging parameters.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 186 - 186
1 Jun 2012
Petrak M Burger A Put RVD Turgeon T Bohm E
Full Access

Introduction

Radiostereometric Analysis (RSA) is an imaging method that is increasingly being utilized for monitoring fixation of orthopaedic implants in randomized clinical trials. Extensive RSA research has been conducted over the last 35+ years using standard clinical x-ray acquisition modalities that irradiate screen/film media or Computed Radiography (CR) plates. The precision of RSA can depend on a number of factors including modality image quality.

Objective

This study assesses the precision of RSA with a novel Digital Radiography (DR) system compared to a CR imaging system using different imaging techniques. Additionally, the study assesses the precision of locating beads embedded in a modified spine pedicle screw.