Abstract
Introduction
Radiostereometric Analysis (RSA) is an imaging method that is increasingly being utilized for monitoring fixation of orthopaedic implants in randomized clinical trials. Extensive RSA research has been conducted over the last 35+ years using standard clinical x-ray acquisition modalities that irradiate screen/film media or Computed Radiography (CR) plates. The precision of RSA can depend on a number of factors including modality image quality.
Objective
This study assesses the precision of RSA with a novel Digital Radiography (DR) system compared to a CR imaging system using different imaging techniques. Additionally, the study assesses the precision of locating beads embedded in a modified spine pedicle screw.
Methods
A modified titanium spinal pedicle screw 4.5 mm diameter, 35 mm length, marked with two 1.0 mm tantalum beads, one inside the head and one near the screw tip was inserted into a bovine tibia segment. Six additional 1.0 mm tantalum beads were inserted into the bone segment superiorly, distally and adjacent to the pedicle screw.
The phantom was placed on a standard clinical diagnostic imaging bed above a custom RSA carbon fiber calibration cage (Halifax Biomedical Inc.). A pair of DR or CR imaging plates were placed below the calibration cage and irradiated 8 times at 100, 125 kV at 2.5 mAs. For DR additional test were performed at 150 kV, and again at 100 kV at 0.5 mAs. At the time of abstract submission CR results at these settings were not available.
To determine precision, the standard deviation of 3D vector distances between beads was determined using RSA for each of the different imaging parameters.
Results
Standard deviations of the inter-bead distances measured in the pedicle screw were 44.4 and 32.1 μm (N=8) respectively for the 100 and 125 kV settings at 2.5 mAs using the DR system, compared to 109.0, 55.8 μm for CR [Fig. 1]. The distances between the bone implanted beads provided standard deviations of 24.4 and 22.7 μm respectively for the 100 and 125 kV settings at 2.5 mAs using the DR system, compared to 33.1 and 33.0 μm with the CR system. Further increasing the photon energy to 150 kV with the DR system reduces the precision error to 22.4 μm in the pedicle screw and remains approximately the same at 21.0 μm in bone. Lowering the mAs while maintaining 100 kV increases the precision error in the pedicle screw (64 μm) and showed no significant difference in bone (24.4 μm).
Conclusion
The current phantom design is basic in nature and does not account for any soft tissue scatter. However, initial results indicate a considerable reduction in precision error when using DR compared to CR imaging equipment for RSA analysis. Increasing the kV did not significantly influence the precision in measuring bead locations in bone. For embedded tantalum beads within a titanium pedicle screw, imaging at higher kV values with the described DR imaging system did allow more precise localization. This approach may be useful in assessing the in vivo position of spine or other titanium implants.