Purpose: The objectives of this study were:
to determine if the deltoid, conjoint tendon and long head of the triceps provide sufficient soft tissue tension to stabilize a RTSA, and;
to determine the influence of loading direction, arm rotation, shoulder position and polyethylene thickness on stability of a RTSA.
The hypotheses were:
that the deltoid, conjoint tendon and long head of the triceps provide sufficient soft tissue tension to stabilize a RTSA, and;
that arm rotation, shoulder position and loading direction would affect stability and increased polyethylene thickness would be associated with increased stability.
Method: Six cadaveric shoulders had all capsule, rotator cuff, and scapulohumeral muscles removed, leaving only the deltoid, conjoint tendon (i.e. coracobrachialis and short head of biceps) and long head of triceps. A RTSA was then performed. A displacing force was then applied perpendicular to the centerline of the humeral socket and this load was increased until dislocation occurred. The load required to cause a dislocation was recorded for superior, inferior, anterior and posterior load directions. This was repeated to measure the effect of humeral component rotation (neutral, 20 degrees retroversion, 20 degrees anteversion), arm position (0 degrees abduction, 60 degrees flexion, 60 degrees abduction and 60 degrees extension) and polyethylene thickness (3, 6 or 9 mm). Statistical analysis used an ANOVA with Tukey post-hoc tests for multiple comparisons (p<
0.05).
Results: The deltoid, conjoint tendon and long head of the triceps provide sufficient soft tissue tension to stabilize a RTSA. The required dislocation force was increased for an inferior direction of load application (p0.05). The required dislocation force was least in an arm position of 60 degrees abduction, followed by 60 degrees extension, with no difference between 0 degrees abduction and 60 degrees flexion (p0.05).
Conclusion: The deltoid, conjoint tendon and long head of the triceps provide sufficient soft tissue tension to stabilize a RTSA. Stability of a RTSA was greatest for an inferior directed force and an arm position of 0 degrees abduction or 60 degrees flexion. There was no influence of arm rotation or polyethylene thickness on stability of a RTSA. This study indicates that stability of a RTSA can still be achieved despite significant soft tissue loss, as long as key soft tissue structures remain intact. As well, certain loading directions and arm positions lead to an increased risk of instability. However, further in vivo studies are required.