Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 271 - 272
1 May 2009
Ippolito E De Maio F Masala S Mancini F Bellini D
Full Access

Aims: Pathologic studies in foetuses and stillborns with congenital clubfoot have shown atrophy of the musculature of the leg omolateral and incresased fibrous tissues within the muscles belly. Both the triceps surae and the tibialis posterior are mostly involved and their tendons thickened. Atrophy of the musculature of the leg has been described in various clinical studies on congenital clubfoot, but most of the authors believe that atrophy might be secondary to surgical treatment and prolonged immobilization in plaster cast and brace. In our study, we correlated the pathology of foetal leg muscle atrophy with leg muscle atrophy shown by patients with congenital clubfoot.

Methods: We investigated the MRI aspects of leg muscles in untreated babies and in children and adults who had been treated soon after birth for unilateral congenital clubfooft. The MRI aspects of the leg muscle in treated patients were compared to those of untreated babies, and to the histopathologic findings of the same muscles in foetuses with congenital clubfoot.

Results: The ratio between the muscles of the normal leg and the leg of the clubfoot side was almost the same as measured either on the histological sections of foetuses with congenital clubfoof or in patients before and after treatment, from birth to adulthood.

Conclusions: Our study shows that in congenital club-foot leg muscle atrophy is a primitive pathologic finding rather than secondary to treatment.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 68 - 68
1 Mar 2005
Causa F Gloria A Borzacchiello A Bellini D Ambrosio L
Full Access

Aims: A mounting research effort has recently been devoted to design a biocompatible, sterile and safe material as nucleus polposus substitute.

Several chemical modifications of Hyaluronic acid (HA), a biodegradable linear polysaccharide, have been devised to provide mechanically and chemically robust materials in medical applications.

This study was specially designed to assess whether such a kind of materials are capable to substitute natural NP by suitable viscoelastic properties.

Methods: The NPs were obtained from pigs (L4-L5, L6-L7). Bromide of 2-Hydroxy-4-hydroxyethoxy-2-methyl-propriophenone ester of HA (50% of degree of esterification, cross-linked gel) (HYAFF120p50A8) and dodecylic amide of Hyaluronic acid (11% of carboxyl group substitution of 200 kDa HA) (HYADD3A8) solutions, supplied by FAB, were studied at different ionic strength (0 and 0.15M).

Small amplitude oscillatory shear tests were performed to study linear viscoelastic properties by using a strain controlled rheometer (Bohlin VOR). In particular, the elastic modulus (G’) and the viscous modulus G’’ were evaluated.

Results: Porcine NP showed a rheological behaviour typical of “weak gel”. Indeed, G’ values were always higher than G” ones all over the frequency range and both moduli were almost frequency independent. In particular, at 1 Hz G’ and G” values were respectively 310 and 81 Pa.

The same rheological behaviour was observed for all HA derivatives. In particular, G’ and G’’ were respectively equal to 400 and 91Pa for HYADD3A8 solutions at 1Hz and at 20mg/ml (0,15M), and 210 and 51Pa for HYAFF120p50A8 at 50 mg/ml(0M).

Conclusions: HYADD3A8 and HYAFF120p50A8 solutions seem promising candidates as NP substitute from a viscoelastic point of view. In particular, HYADD3A8 (20mg/ml,0.15M solution) properly matched the rheological behaviour of porcine NPs.