Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Methods. Patients who underwent RA-TKA between January and December 2022 for primary
Several anatomical landmarks are preferable in order to achieve the precise decision of femoral component rotation in order to achieve a satisfying result in total knee arthroplasty (TKA). The posterior condylar axis (PCA) is apparent and allows minimization of interobserver error compared with the transepicondylar axis or anterior-posterior axis. The rotation angle based on PCA observed during surgery differs from the angle measured on pre-and postoperative epicondylar view, because X-rays do not reflect the posterior condylar cartilage. We investigated the influence of the posterior condylar cartilage on setting the rotation angle of the femoral component in 184 knees in 112 patients with
Aims. The aim of this study was to compare the post-operative radiographic
and clinical outcomes between kinematically and mechanically aligned
total knee arthroplasties (TKAs). . Patients and Methods. A total of 60 TKAs (30 kinematically and 30 mechanically aligned)
were performed in 60 patients with
One of four normal people had mechanical alignment of 3 degrees varus and more than so-called “constitutional varus”. Parallel joint line to the floor found in both neutral and varus alignment. Therefore, joint line orientation may play an important role in clinical outcomes after TKA. For reconstituting joint line parallel to the floor advocated by 30 varus tibial cut that was introduced by Hungerford et al. The aims of this study attempt to compare between difference radiographic parameter in term of clinical outcomes. The prospective study conducted on 94 primary
Background. In recent literatures, medial instability after TKA was reported to deteriorate early postoperative pain relief and have negative effects on functional outcome. Furthermore, lateral laxity of the knee is physiological, necessary for medial pivot knee kinematics, and important for postoperative knee flexion angle after cruciate-retaining total knee arthroplasty (CR-TKA). However, the influences of knee stability and laxity on postoperative patient satisfaction after CR-TKA are not clearly described. We hypothesized that postoperative knee stability and ligament balance affected patient satisfaction after CR-TKA. In this study, we investigated the effect of early postoperative ligament balance at extension on one-year postoperative patient satisfaction and ambulatory function in CR-TKAs. Materials & Methods. Sixty patients with
Purpose. Degenerative osteoarthritis of the knee usually shows arthritic change in the medial tibiofemoral joint with severe varus deformity. In TKA, the medial release technique is often used for achieving mediolateral balancing, but there is some disagreement regarding the importance of pursuing the perfect rectangular gaps. Our hypothesis is that the minimal release especially in MCL is beneficial regarding on retaining the physiological medial stability and knee kinematics, which leads to improved functional outcome. Therefore, the purpose of this study is to examine the thickness of the tibia resection if the extent of the medial release is minimized to preserve the medial soft tissue in TKA. Patients and Methods. Thirty TKAs were performed for
PURPOSE. Total knee arthroplasty (TKA) is a successful technique for treating painful osteoarthritic knees. However, the patients' satisfaction is not still comparable with total hip arthroplasty. Basically, the conditions with operated joints were anterior cruciate ligament (ACL) deficient knees, thus, the abnormal kinematics is one of the main reason for the patients' incomplete satisfaction. Bi-cruciate stabilized (BCS) TKA was established to reproduce both ACL and posterior cruciate ligament (PCL) function and expected to improve the abnormal kinematics. However, there were few reports to evaluate intraoperative kinematics in BCS TKA using navigation system. Hence, the aim in this study is to reveal the intraoperative kinematics in BCS TKA and compare the kinematics with conventional posterior stabilized (PS) TKA. Materials and Methods. Twenty five consecutive subjects (24 women, 1 men; average age, 77 years; age range, 58–85 years) with
Background. Data on varus-valgus and rotational profiles can be obtained during navigated total knee arthroplasty (TKA). Such intraoperative kinematic data might provide instructive clinical information for refinement of surgical techniques, as well as information on the anticipated postoperative clinical outcomes. However, few studies have compared intraoperative kinematics and pre- and postoperative clinical outcomes; therefore, the clinical implications of intraoperative kinematics remain unclear. In clinical practice, subjects with better femorotibial rotation in the flexed position often achieve favorable postoperative range of motion (ROM); however, no objective data have been reported to prove this clinical impression. Hence, the present study aimed to investigate the correlation between intraoperative rotation and pre- and postoperative flexion angles. Materials and Methods. Twenty-six patients with
INTRODUCTION. Rotational alignment of the femoral and tibial component in total knee arthroplasty (TKA) are separately determined based on the anatomy of each bone. Popular references are the transepicondylar axis (TEA) for femoral component, and medial one-third of the tibial tubercle for the tibial component. It was reported that these references are not in accordance with each other in osteoarthritic (OA) knees and rotational mismatch could occur even when the components were accurately aligned. There has been, however, a paucity of data as for the rotational mismatch after TKA for OA knees. The purpose of this study was to evaluate the rotational mismatch between the femoral and tibial component after TKA for OA knees. SUBJECTS & METHODS. Eighty-four knees which underwent primary TKA for the
Purpose. To investigate the tibiofemoral rotational profiles during surgery in navigated posterior-stabilized (PS) total knee arthroplasty (TKA) and investigated the effect on postoperative maximum flexion angles. Materials and Methods. At first, twenty-five consecutive subjects (24 women and 1 man; age: mean, 77 years; range, 58–85 years) with
Background:. Appropriate positioning of total knee arthroplasty (TKA) components is a key concern of surgeons. Post-operative varus alignment has been associated with poorer clinical outcome scores and increased failure rates. However, obtaining neutral alignment can be challenging in cases with significant pre-operative varus deformity. Questions:. 1) In patients with pre-operative varus deformities, does residual post-operative varus limb alignment lead to increased revision rates or poorer outcome scores compared to correction to neutral alignment? 2) Does placing the tibial component in varus alignment lead to increased revision rates and poorer outcome scores? 3) Does femoral component alignment affect revision rates and outcome scores? 4) Do these findings change in patients with at least 10 degrees of varus alignment pre-operatively?. Patients and Methods:. 553 patients undergoing TKA for
Total knee arthroplasty (TKA) is an exceptionally successful and robust treatment for disabling knee disease, but many efforts continue to improve patient postoperative satisfaction and performance. One approach to improving performance is to restore TKA motions closer to those in healthy knees. Based upon an idealized model of knee motions, it is possible to design tibiofemoral articulating surfaces to promote natural kinematics and force transfer (Fiedler et al., Acta Bioeng Biomech, 2011). Such an asymmetric design is expected to promote rollback in stance phase that continues through deeply flexed activities. The purpose of this study is twofold: (1) To determine if a TKA designed on a theoretical basis achieves the proposed motions in vivo, and (2) To track postoperative kinematic patterns with examinations at 6–12 weeks, 6 months and one year postoperatively. This paper reports results of the initial cohort that has completed 6–12 week and 6-month examinations. Eight patients, including 3 females, with unilateral TKA for
Introduction. Range of motion (ROM) is one of the important factor for better functional outcome after total knee arthroplasty (TKA). In posterior cruciate ligament (PCL) retaining (CR) TKA, adequate PCL function is suggested to be important for better kinematics and ROM. However, intraoperative assessment of PCL function is relatively subjective, thus more objective evaluation is required to improve the functional outcomes after TKA. In clinical practice, tibial posterior sagging sign is well known to indicate PCL deficiency. Hence, we hypothesized that intraoperative femorotibial antero-posterior (AP) changes at 90° of flexion indirectly reflected the PCL function and associated with postoperative maximum flexion angles in CR TKA. The purpose of this study was to investigate the correlation between intraoperative femorotibial AP changes at 90° of flexion and postoperative maximum flexion range in navigated CR TKA. Methods. Between March 2014 and March 2015, forty patients with
INTRODUCTION. To obtain appropriate joint gap and soft tissue balance, and to correct the lower limb alignment are important factor to achieve success of total knee arthroplasty (TKA). A variety of computer-assisted navigation systems have been developed to implant the component accurately during TKA. Although, the effects of the navigation system on the joint gap and soft tissue balance are unclear. The purpose of the present study was to investigate the influence of accelerometer-based portable navigation system on the intraoperative joint gap and soft tissue balance. METHODS. Between March 2014 and March 2015, 36 consecutive primary TKAs were performed using a mobile-bearing posterior stabilized (PS) TKA (Vanguard RP; Biomet) for
Gap planning in total knee arthroplasty (TKA) navigation is critically concerned. Osteophyte is one of the contributing factors for gap balancing in TKA. The osteophyte is normally removed before gap planning step. However, the posterior condylar osteophyte of femur is sometimes removed during the flexion gap preparation or may not be removed at all depends on individual case. This study attempts to investigate on how posterior condylar osteophyte affects on gap balancing and limb alignment during operation. The study was conducted on 35
Background. Flexion-extension gap balancing is recognized as an essential part of total knee arthroplasty (TKA). The gap is often evaluated using spacer blocks, laminar spreader, or tensor device. The evaluation of gap balancing with the patella in the reduced position is more physiological and reproducible than with patellofemoral (PF) joint everted. However, in the knee with a reduced PF joint, it is difficult to comprehend the anteroposterior position of the tibia to the femur. So, we developed a new tensor to lift up the tibia ahead and fix the anteroposterior position of the tibia to the femur with the PF joint reduced [Fig.1]. Purpose. To investigate how accurate the extension and flexion gaps would be measured by comparing our new tensor with the conventional tensor which could not fix the position of the tibia to the femur. Methods. This study includes 60 knees in 48 patients underwent TKA using the Posterior Stabilized (PS) Prosthesis (Striker), for
With clearly defined indications, high tibial osteotomy offers a good outcome, provided the correction is performed as accurately and as early as possible. Ideally, in a
Today several therapeutic options exist for the management of early degenerative lesions in the knee. These include marrow stimulation techniques (abrasion arthroplasty, sub-chondral drilling, microfracturing), periosteal and perichondral graft interposition, the implantation of synthetic matrices (collagen, carbon fibres, or glycosaminoglycan gel), autologous chondrocyte transplantation, osteochondral mosaic autografts or allografts, or simple arthroscopic lavage and debridement. It appears that some of these techniques are moderately successful in the short-term, especially in younger patients with relatively recent localised chondral lesions or erosion, and in joints with normal stability and alignment. In these optimal conditions, it is possible to achieve repair in 70% of the diseased area. However, the cartilage remains substandard, with a one-third decrease in stiffness and increased tissue permeability. In the early degenerative knee, conservative treatment options include unloader bracing and the use of chondroprotective agents. Unloader braces have been shown to improve the disease-specific quality of life and the functional status of patients with
Objective. The goal of total knee arthroplasty (TKA) is to achieve a stable and well-aligned tibiofemoral and patello-femoral (PF) joint, aiming at long-term clinical patient satisfaction. The surgical principles of both cruciate retaining (CR) and posterior stabilized (PS) TKA are accurate osteotomy and proper soft tissue balancing. We have developed an offset-type tensor, and measured intra-operative soft tissue balance under more physiological joint conditions with femoral component in place and reduced PF joint. In this study, we measured intra-operative soft tissue balance and assessed the post-operative knee joint stability quantitatively at one month, six months and one year after surgery, and compared these parameters between CR and PS TKAs. Material and Method. Sixty patients with
Recently, many researches of minimal incision surgery (MIS) total knee arthroplasty (TKA) have been reported, however very few of these contain clinical results. Regardless of this, MIS TKA is widely promoted as an improvement over traditional TKA. Although traditional TKA allows for excellent visualization, component orientation, fixation, and has been associated with remarkable long-term implant survival, many patients expect an extremely small incision, minimal or no pain and discomfort associated with their surgery, and certainly no increase in the complication rate. While there is some evidence that short term benefits may occur, there is concern that there may be an increase in complications with the use of MIS technique. We report here cases that malalignments in early phase were occurred after MIS TKAs. A consecutive series of MIS TKA for