Introduction. Varus alignment in total knee replacement (TKR) results in a larger portion of the joint load carried by the medial compartment. [1]. Increased burden on the medial compartment could negatively impact the implant fixation, especially for cementless TKR that requires bone ingrowth. Our aim was to quantify the effect
Aims. This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and
Introduction. Mechanical axis limb alignment in total knee arthroplasty (TKA) has demonstrated excellent long-term survivorship; however, patient satisfaction continues to demand improvement. Alternative emerging alignment concepts including kinematic and tibial constitutional varus have been introduced but remain controversial. The purpose of this study was to evaluate outcomes and patient satisfaction following TKA with tibial components placed in constitutional
Aims. The Coronal Plane Alignment of the Knee (CPAK) classification has been developed to predict individual variations in inherent knee alignment. The impact of preoperative and postoperative CPAK classification phenotype on the postoperative clinical outcomes of total knee arthroplasty (TKA) remains elusive. This study aimed to examine the effect of postoperative CPAK classification phenotypes (I to IX), and their pre- to postoperative changes on patient-reported outcome measures (PROMs). Methods. A questionnaire was administered to 340 patients (422 knees) who underwent primary TKA for osteoarthritis (OA) between September 2013 and June 2019. A total of 231 patients (284 knees) responded. The Knee Society Score 2011 (KSS 2011), Knee injury and Osteoarthritis Outcome Score-12 (KOOS-12), and Forgotten Joint Score-12 (FJS-12) were used to assess clinical outcomes. Using preoperative and postoperative anteroposterior full-leg radiographs, the arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) were calculated and classified based on the CPAK classification. To investigate the impact on PROMs, multivariable regression analyses using stepwise selection were conducted, considering factors such as age at surgery, time since surgery, BMI, sex, implant use, postoperative aHKA classification, JLO classification, and changes in aHKA and JLO classifications from preoperative to postoperative. Results. The preoperative and postoperative CPAK classifications were predominantly phenotype I (155 knees; 55%) and phenotype V (73 knees; 26%), respectively. The change in the preoperative to postoperative aHKA classification was a significant negative predictive factor for KOOS-12 and FJS-12, while postoperative apex proximal JLO was a significant negative predictive factor for KSS 2011 and KOOS-12. Conclusion. In primary TKA for OA, preoperative and postoperative CPAK phenotypes were associated with PROMs. Alteration in
Introduction. Varus alignment of the femoral component in total hip arthroplasty (THA) is thought to be a risk factor for implant loosening and early revision surgery. The purpose of this study was to evaluate whether the Exeter stem tolerates
Aims. To explore the clinical relevance of joint space width (JSW) narrowing on standardized-flexion (SF) radiographs in the assessment of cartilage degeneration in specific subregions seen on MRI sequences in knee osteoarthritis (OA) with neutral, valgus, and
The concept of constitutional varus and controversy regarding placing the total knee arthroplasty (TKA) in a neutral versus physiologic
Introduction. Malalignment of total knee arthroplasty components may affect implant function and lead to decreased survival, regardless of preferred alignment philosophy – neural mechanical axis restoration or kinematic alignment. A common technique is to set coronal alignment prior to adjusting slope. If the guide is not maintained in a neutral position, adjustment of the slope may alter coronal alignment. Different implant systems recommend varying degrees of slope for ideal function of the implant, from 0–7°. The purpose of this study was to quantify the change in coronal alignment with increasing posterior tibial slope comparing two methods of jig fixation. Methods. Prospective consecutive series of 100 patients undergoing total knee arthroplasty using computer navigation. First cohort of 50 patients had extramedullary cutting jig secured distally with ankle clamp and proximally with one pin and a second cohort of 50 patients with the jig secured distally with ankle clamp and proximally with two pins. The change in coronal alignment was recorded with each degree of increasing posterior slope from 0–7° using computer navigation. Mean coronal alignment and change in coronal alignment was compared between the two cohorts. Results. Utilizing one pin to secure the jig, all osteotomies drifted into increased varus with an average coronal alignment of 2.38° varus (range 0.5–4.5°varus) at 7° posterior slope with an average change of 0.34° in coronal alignment per degree increase of posterior slope. Utilizing two pins to secure the jig showed a propensity to drift into valgus with an average coronal alignment of 0.22° valgus (range 1.0° varus − 1.5° valgus) at 7° posterior slope with an average change of 0.04° in coronal alignment per degree increase of posterior slope. The observed changes in coronal alignment between the two cohorts of patients were significantly different at all recorded levels of posterior slope. Conclusion. In this study, when one pin is utilized to secure the jig increasing posterior slope resulted in
Introduction. The current standard for alignment in total knee arthroplasty (TKA) is neutral mechanical axis within 3° of varus or valgus deviation [1]. This configuration has been shown to reduce wear and optimally distribute load on the polyethylene insert [2]. Two key factors (patient-specific hip-knee-ankle (HKA) angle and surgical component alignment) influence load distribution, kinematics and soft-tissue strains across the tibiofemoral (TF) joint. Improvements in wear characteristics of TKA materials have facilitated a trend for restoring the anatomic joint line [3]. While anatomic component alignment may aid in restoring more natural kinematics, the influence on joint loads and soft-tissue strains should be evaluated. The purpose of the current study was to determine the effect of
Abstract. Objectives. Stem malalignment in total hip arthroplasty (THA) has been associated with poor long-term outcomes and increased complications (e.g. periprosthetic femoral fractures). Our understanding of the biomechanical impact of stem alignment in cemented and uncemented THA is still limited. This study aimed to investigate the effect of stem fixation method, stem positioning, and compromised bone stock in THA. Methods. Validated FE models of cemented (C-stem – stainless steel) and uncemented (Corail – titanium) THA were developed to match corresponding experimental model datasets; concordance correlation agreement of 0.78 & 0.88 for cemented & uncemented respectively. Comparison of the aforementioned stems was carried out reflecting decisions made in the current clinical practice. FE models of the implant positioned in varus, valgus, and neutral alignment were then developed and altered to represent five different bone defects according to the Paprosky classification (Type I – Type IIIb). Strain was measured on the femur at 0mm (B1), 40mm (B2), and 80mm (B3) from the lesser trochanter. Results. Cemented constructs had lower strain on the implant neck, and higher overall stiffness and strain on bone compared to uncemented THA. Strain on the bone increased further down the shaft of the femoral diaphysis, and with progressing bone defect severity in all stem alignment cases. Highest strain on the femur was found at B2 in all stem alignment and bone defect models. Varus alignment showed higher overall femoral strain in both fixation methods. Interestingly, in uncemented models, highest strain was shown on femoral bone proximally (B1-B2) in
Objectives. Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. Methods. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle. Results. The femur was positioned more medially relative to the tibia, with increasing
Known risk factors for early periprosthetic femur fracture (PFF) following total hip arthroplasty (THA) include poor bone quality, surgical approach and cementless implants. The association between femoral component size and alignment and the risk of early PFF is not well described. We evaluated radiographic parameters of femoral component sizing and alignment as risk factors for early PFF. From 16,065 primary cementless THA, we identified 66 cases (0.41%) of early PFF (<90 days from index THA) at a single institution between 2016–2020. The stem was unstable and revised in all cases. We matched 60 cases of early PFFs (2:1) to 120 controls based on femoral component model, offset, surgical approach, age, BMI, and sex. Mean age was 67 years; 60% were female. Radiographic assessment of preoperative bone morphology and postoperative femoral component parameters including stem alignment, metaphyseal fill, and medial congruence with the calcar. A multivariable logistic regression was built to identify radiographic risk factors associated with early PPF. Markers of poor preoperative bone quality including canal calcar ratio (p=0.003), canal flare index (p<0.001), anteroposterior canal bone ratio (CBR) (p<0.001) and lateral CBR (p<0.001) were statistically associated with PFF. Valgus alignment (23% versus 12%) (p<0.001) was more prevalent in the PFF group compared to controls, as well as
Background:. Appropriate positioning of total knee arthroplasty (TKA) components is a key concern of surgeons. Post-operative
Objectives. Malalignment of the tibial component could influence the long-term survival of a total knee arthroplasty (TKA). The object of this study was to investigate the biomechanical effect of varus and valgus malalignment on the tibial component under stance-phase gait cycle loading conditions. Methods. Validated finite element models for varus and valgus malalignment by 3° and 5° were developed to evaluate the effect of malalignment on the tibial component in TKA. Maximum contact stress and contact area on a polyethylene insert, maximum contact stress on patellar button and the collateral ligament force were investigated. Results. There was greater total contact stress in the
Using a tensor for total knee arthroplasty (TKA) that is designed to facilitate soft tissue balance measurements with a reduced patello-femoral (PF) joint, we examined the influence of pre-operative deformity on intra-operative soft tissue balance during posterior-stabilized (PS) TKA. Joint component gap and varus angle were assessed at 0, 10, 45, 90 and 135° of flexion with femoral trial prosthesis placed and PF joint reduced in 60 varus type osteoarthritic patients. Joint gap measurement showed no significant difference regardless the amount of pre-operative
Introduction. Evaluations of Computer-assisted orthopaedic surgery (CAOS) systems generally overlooked the intrinsic accuracy of the systems themselves, and have been largely focused on the final implant position and alignment in the reconstructed knee [1]. Although accuracy at the system-level has been assessed [2], the study method was system-specific, required a custom test bench, and the results were clinically irrelevant. As such, clinical interpolation/comparison of the results across CAOS systems or multiple studies is challenging. This study quantified and compared the system-level accuracy in the intraoperative measurements of resection alignment between two CAOS systems. Materials and Methods. Computer-assisted TKAs were performed on 10 neutral leg assemblies (MITA knee insert and trainer leg, Medial Models, Bristol, UK) using System I (5 legs, ExactechGPS®, Blue-Ortho, Grenoble, FR) and System II (5 legs, globally established manufacturer). The surgeries referenced a set of pre-defined anatomical landmarks on the inserts (small dimples). Post bone cut, the alignment parameters were collected by the CAOS systems (CAOS measured alignment). The pre- and post- operative leg surfaces were scanned, digitized, and registered (Comet L3D, Steinbichler, Plymouth, MI, USA; Geomagic, Lakewood, CO, USA; and Unigraphics NX version 7.5, Siemens PLM Software, Plano, TX, USA). The alignment parameters were measured virtually, referencing the same pre-defined anatomical landmarks (baseline). The signed and unsigned measurement errors between the baseline and CAOS measured alignment were compared between the two CAOS systems (significance defined as p<0.05), representing the magnitude of measurement errors and bias of the measurement error generated by the CAOS systems, respectively. Results. The measurement errors are presented [Table 1]. For unsigned measurement error, System II was higher in the tibial
Introduction. Knee joint should be aligned for reconstruction of the function in Total Knee Replacement(TKR). Although a surgeon try to correct the alignment of a knee joint, sometimes
In this RCT the primary aim was to assess whether a short (125mm) Exeter V40 stem offered an equivalent hip specific function compared to the standard (150mm) stem when used for cemented total hip arthroplasty (THA). Secondary aims were to evaluate health-related quality of life (HRQoL), patient satisfaction, stem height and alignment, radiographic loosening, and complications between the two stems. A prospective multicentre double-blind randomised control trial was conducted. During a 15-month period, 220 patients undergoing THA were randomised to either a standard (n=110) or short (n=110) stem Exeter. There were no significant (p≥0.065) differences in preoperative variables between the groups. Functional outcomes and radiographic assessment were undertaken at 1- and 2-years. There were no differences (p=0.428) in hip specific function according to the Oxford hip score at 1-year (primary endpoint) or at 2-years (p=0.767) between the groups. The short stem group had greater varus angulation (0.9 degrees, p=0.003) when compared to the standard group and were more likely (odds ratio 2.42, p=0.002) to have
The coronal plane lower limb alignment plays an important role in the occurrence and progression in knee osteoarthritis. There have been reports of the valgus knee in patients with unilateral developmental hip dislocation (UDHD) with the relatively small sample size. Besides, few studies have analyzed the lower limb alignment of the contralateral side. The purpose of our study was to identify the coronal plane alignment of both the ipsilateral and the contralateral lower limb in patients with UDHD and find out the difference between patients with Hartofilakidis type II and III. The radiographic data of all UDHD patients who met the inclusion criteria from March 2011 to February 2017 were retrospectively reviewed, including the hip-knee-ankle angle (HKA), mechanical lateral distal femoral angle (mLDFA), anatomical lateral distal femoral angle (aLDFA), mechanical proximal tibial angle (MPTA) and the lateral distal tibial angle (LDTA). Besides, the femoral torsion angle was measured on the images of CT scan. The average HKA was 3.42°(range: −4.3–12.8°) on the affected side, and −2.11°(range: −11.4–5.4°) on the contralateral side (P?0.0001). The valgus lower limb alignment on ipsilateral side was most frequently seen in both Hartofilakidis type II (20cases, 51.3%) and type III groups (25cases, 67.6%), whereas for the contralateral side, the neutral alignment in type II group (27 cases, 69.2%) and
Purpose: Varus deformity after total knee replacement (TKR) is associated with poor outcome. This aim of this study was to determine whether the same is true for medial unicompartmental arthroplasty (UKA). Methods: 158 patients implanted with the Oxford UKA, using a minimally invasive approach, were studied prospectively for five years. Leg alignment was measured with a long-arm goniometer referenced from Anterior Superior Iliac Spine, centre of patella and centre of ankle. Patients were grouped according to the American Knee Society Score (AKSS). Group A: >
0° varus (n=13, 8.2%); Group B: 0 to 4° valgus (n=39, 24.7%); Group C: 5–10° valgus (normal alignment, n=106, 67.12%). Comparisons were made between the three groups in terms of the absolute and the change in Oxford Knee Score (OKS) and AKSS over the five year period, and the presence of radiolucency. Results: There was no significant difference in any outcome measure except for Objective-AKSS (p<
0.001). The means and standard deviations of the ΔOKS for the groups were:. 24 ± 5,. 22 ± 10, and. 22 ± 9 and for Objective-AKSS were 84 ± 12, 82 ± 15 and 91 ± 11 respectively. The frequency of five year radiolucency for the groups A, B, and C were 42%, 35%, and 45% respectively. Conclusion: The aim of the Oxford UKA is to restore knee kinematics and thus knee alignment to the pre-disease state. Therefore, as demonstrated by this study, about 30% of patients have