Summary. Our meta-analysis showed that pooled mean blood loss during spinal
Massive cemented endoprosthesis are used to enable early resumption of activity after
Summary. This is the first ever study to report the successful elimination of malignant cells from salvaged blood obtained during metastatic spine
Summary. There is emerging evidence of successful application of IOCS and leucocyte depletion filter in removing tumour cells from blood salvaged during various oncological surgeries. Research on the use of IOCS-LDF in MSTS is urgently needed. Introduction. Intra-operative cell salvage (IOCS) can reduce allogeneic blood transfusion requirements in non-tumour related spinal surgery. However, IOCS is deemed contraindicated in metastatic spine tumor surgery (MSTS) due to risk of tumour dissemination. Evidence is emerging from different surgical specialties describing the use of IOCS in
Introduction and Objectives: The success rate of bone allografts in the medium term when used in
Background: Intramedullary spinal cord tumours (ISCT) are rare with an annual incidence of less than 1 per 100,000 population. This makes assessing the efficacy of any treatment regimen difficult. Goals of management currently focus on obtaining a histological diagnosis for prognostic and therapeutic planning, and long-term tumour control. However, current outcome measures are crude and the quality of life outcome after surgery for intramedullary spinal cord tumours remains uncertain. Aim: The aims of this study are to assess disability and outcome in patients undergoing surgery for ISCT. We aim to provide prospective quality of life data on patients with spinal cord tumours. Patients and Methods: Data was collected prospectively on patients undergoing surgery for ISCT between 1995–2006 under the care of the senior author. The Short Form 36 (SF36) Health Survey Questionnaire was self-administered prior to surgery and again at 3, 12 and 24 months after surgery. All patients were also classified using the Frankel disability score. SF36 data were analysed using the Friedman test with Dunn’s post-test for multiple comparisons and the Wilcoxon signed rank test for matched pairs. Results: Sixty-five patients (35 men, 30 women) had surgical interventions for ISCT. The mean age at first operation was 43y and median follow-up time was 60 months. 15% had astrocytomas, 45% ependymomas, 7 haemangioblastomas and 19 miscellaneous tumours. Seventy-two percent of patients (47/65) were graded Frankel D pre-operatively and 65% (42/65) remained so after surgery. SF36 data were obtained for 17 patients. Pre-operatively, patients with ISCT had significantly lower SF36 physical domain scores when compared with normative data from age-matched population controls (p=0.0096). There was no difference between post-operative scores and those of normal controls. Matched pairs analysis on the patients with complete SF36 data sets (n=12) demonstrated a significant improvement in physical function post-operatively. Eleven of these 12 did not show an improvement in their Frankel grade, remaining Grade D pre- and post-operatively. Conclusion: From this preliminary study it appears that patients with spinal cord tumours have significantly impaired physical function compared to the normal population. More importantly, we have demonstrated that the SF36 can detect changes in function associated with spinal cord
Introduction: Non-invasive expandable prostheses for limb salvage
Non-invasive expandable prostheses for limb salvage
Non-invasive expandable prostheses for limb salvage
Primary malignant bone and soft tissue tumours often occur in the lower extremities of active individuals including children, teenagers and young adults. Survivors routinely face long-term physical disability. Participation in sports is particularly important for active young people but the impact of sarcoma treatment is not widely recognised and clinicians may be unable to provide objective advice about returning to sports. We aimed to identify and summarise the current evidence for involvement in sports following treatment of lower limb primary malignant bone and soft tissue tumours. A comprehensive search strategy was used to identify relevant studies combining the main concepts of interest: (1) Bone/Soft Tissue Tumour, (2) Lower Limb, (3) Surgical Interventions and (4) Sports. Studies were selected according to eligibility criteria with the consensus of three authors. Customised data extraction and quality assessment tools were used. 22 studies were selected, published between 1985 – 2020, and comprising 1005 patients. Fifteen studies with data on return to sports including 705 participants of which 412 (58.4%) returned to some form of sport at a mean follow-up period of 7.6 years. Four studies directly compared limb sparing and amputation; none of these were able to identify a difference in sports participation or ability. Return to sports is important for patients treated for musculoskeletal tumours, however, there is insufficient published research to provide good information and support for patients. Future prospective studies are needed to collect better pre and post-treatment data at multiple time intervals and validated clinical and patient sports participation outcomes such as type of sports participation, level and frequency and a validated sports specific outcome score, such as UCLA assessment. In particular, more comparison between limb sparing and amputation would be welcome.
Prevalence of artificial intelligence (AI) algorithms within the Trauma & Orthopaedics (T&O) literature has greatly increased over the last ten years. One increasingly explored aspect of AI is the automated interpretation of free-text data often prevalent in electronic medical records (known as natural language processing (NLP)). We set out to review the current evidence for applications of NLP methodology in T&O, including assessment of study design and reporting. MEDLINE, Allied and Complementary Medicine (AMED), Excerpta Medica Database (EMBASE), and Cochrane Central Register of Controlled Trials (CENTRAL) were screened for studies pertaining to NLP in T&O from database inception to 31 December 2023. An additional grey literature search was performed. NLP quality assessment followed the criteria outlined by Farrow et al in 2021 with two independent reviewers (classification as absent, incomplete, or complete). Reporting was performed according to the Synthesis-Without Meta-Analysis (SWiM) guidelines. The review protocol was registered on the Prospective Register of Systematic Reviews (PROSPERO; registration no. CRD42022291714).Aims
Methods
Primary malignant bone tumor often requires a surgical treatment to remove the tumor and sometimes restore the anatomy using a frozen allograft. During the removal, there is a need for a highest possible accuracy to obtain a wide safe margin from the bone tumour. In case of reconstruction using a bone allograft, an intimate and precise contact at each host-graft junction must be obtained (Enneking 2001). The conventional freehand technique does not guarantee a wide safe margin nor a satisfying reconstruction (Cartiaux 2008). The emergence of navigation systems has procured a significant improvement in accuracy (Cartiaux 2010). However, their use implies some constraints that overcome their benefits, specifically for long bones. Patient-specific cutting guides become now available for a clinical use and drastically simplify the intra-operative set-up. We present the use of pre-operative assistances to produce patient-specific cutting guides for tumor resection and allograft adjustment. We also report their use in the operative room. We have developed technical tools to assist the surgeon during both pre-operative planning and surgery. First, the tumor extension is delineated on MRI images. These MRI images are then merged with Computed Tomography scans of the patient. The tumor and the CTscan are loaded in custom software that enables the surgeon to define target (desired) cutting planes around the tumor (Paul 2009) including a user-defined safe margin. Finally, cutting guides are designed on the virtual model of the patient as a mould of the bone surface surrounding the tumor, materialising the desired cutting planes. When required, a massive bone allograft is selected by comparing shapes of the considered patient's bone and available allografts. The resection planes are transferred onto the selected allograft and a second guide is designed for the allograft cutting. The virtually-designed cutting guides are then manufactured by a rapid prototyping machine using biocompatible material. This procedure has been used to excise a local recurrence of a tibial sarcoma and reconstruct the anatomy using a frozen tibial allograft. The pre-operative planning using virtual models of the patient's bone, tumor and the available allografts enabled the surgeon to localise the tumor, define the desired cutting planes and select the optimal allograft. Patient- and allograft-specific guides have been designed and manufactured. A stable and accurate positioning of guide onto the patient's tibia was made easier thanks to the plate formerly put in place during the previous surgery. An accurate positioning of the allograft cutting guide has been obtained thanks to its design. The obtained reconstruction was optimal with a adjusted allograft that was perfectly fitting the bone defect. The leg alignment was also optimally restored. Computer assistances for tumor surgery are progressively appearing. We have presented at CAOS 2010 an optical navigation system for tumor resection in the pelvis that was promising. However, such a tool is not well adapted for long bones. We have used patient-specific guides on a clinical case to assess the feasibility of the technique and check its accuracy in the resection and reconstruction. The surgeon has benefited from the 3D planning to define his strategy. He had the opportunity to select the optimal transplant for his patient and plan the same cuttings for the allograft and the patient. During the surgery, guide positioning was straightforward and accurate. The bone cuttings were very easy to perform. The use of custom guides decreases the operating time when compared to the conventional procedure since there is no need for measurements between cutting trajectories and anatomical landmarks. Furthermore, the same cutting planes were performed around the tumor and onto the allograft to obtain a transplant that optimally fills the defect. We recommend the use of such an intra-operative assistance for tumor surgery.
CT and MRI scans are complementary preoperative imaging investigations for planning complex musculoskeletal bone tumours resection and reconstruction. Conventionally, tumour surgeons analyse two-dimensional (2-D) imaging information, mentally integrate and formulate a three-dimensional (3-D) surgical plan. Difficulties are anticipated with increase in case complexity and distorted surgical anatomy. Incorporating computer technology to aid in this surgical planning and executing the intended resection may improve precision. Although computer-assisted surgery has been widely used in cranial biopsies and tumour resection, only small case series using CT-based navigation are recently reported in the field of musculoskeletal tumor surgery. We investigated the results of CT/MRI image fusion for Computer Assisted Tumor Surgery (CATS) with the help of a navigation system. We studied 21 patients with 22 musculoskeletal tumours who underwent CATS from March 2006 to July 2009. A commercially available CT-based spine navigation system (Stryker Navigation; CT spine) was used. Of the 22 patients, 10 were males, 11 were females, and the mean age was 32 years at the time of surgery (range, 6–80 years). Five tumours were located in the pelvis, seven sacrum, eight femurs, and two tibia. The primary diagnosis was primary bone tumours in 16 (3 benign, 13 sarcoma) and metastatic carcinoma in four. The minimum follow-up was 17 months (average, 35.5 months; range, 17–52 months). Preoperative CT and MRI scan of each patient were performed. Axial CT slices of 0.0625mm or 1.25mm thickness and various sequences of MR images in Digital Imaging and Communications in Medicine (DICOM) format were obtained. CT and MR images for 22 cases were fused using the navigation software. All the reconstructed 2-D and 3-D images were used for preoperative surgical planning. The plane of tumour resection was defined and marked using multiple virtual screws sited along the margin of the planned resection. We also integrated the computer-aided design (CAD) data of custom-made prostheses in the final navigation resection planning for eight cases. All tumour resections could be carried out as planned under navigation guidance. Navigation software enabled surgeons to examine all fused image datasets (CT/MRI scans) together in two spatial and three spatial dimensions. It allowed easier understanding of the exact anatomical tumor location and relationship with surrounding structures. Intraoperatively, image guidance with the help of fusion images, provided precise visual orientation, easy identification of tumor extent, neural structures and intended resection planes in all cases. The mean time for preoperative navigation planning was 1.85 hours (1 to 3.8). The mean time for intraoperative navigation procedures was 29.6 minutes (13 to 60). The time increased with case complexity but lessened with practice. The mean registration error was 0.47mm (0.31 to 0.8). The virtual preoperative images matched well with the patients' operative anatomy. A postoperative superficial wound infection developed in one patient with sacral chordoma that resolved with antibiotic whereas a wound infection in another with sacral osteosarcoma required surgical debridement and antibiotic. After a mean follow-up of 35.5 months (17–52 months), five patients died of distant metastases. Three out of four patients with local recurrence had tumors at sacral region. Three of them were soft tissue tumour recurrence. The mean functional MSTS score in patients with limb salvage surgery was 28.3 (23 to 30). All patients (except one) with limb sparing surgery and prosthetic reconstruction could walk without aids. Multimodal image fusion yields hybrid images that combine the key characteristics of each image technique. Back conversion of custom prosthesis in CAD to DICOM format allowed fusion with navigation resection planning and prosthesis reconstruction in musculoskeletal tumours. CATS with image fusion offers advanced preoperative 3-D surgical planning and supports surgeons with precise intraoperative visualisation and identification of intended resection for pelvic, sacral tumors. It enables surgeons to reliably perform joint sparing intercalated tumor resection and accurately fit CAD custom-made prostheses for the resulting skeletal defect.
The authors offer their personal experience with long term results on 71 patients (72 allografts) operated between 1961 and 1990. 23 were large osteoarticular grafts, 28 intercalary grafts and 20 fibular grafts. We used one composite hip endoprosthesis in 1988 after 16cm proximal femur resection due to Ewing sarcoma in a 10 year old girl. From the 23 osteoarticular grafts 14 (60%) are long term survivals including one after fracture salvage. Six had to be removed due to infection. From the 28 intercalary grafts 16 (57%) are surviving over 15 years. Infection occurred in 6 patients with chemotherapy. Two of them had intra-arterial CDDP and one additional radiation. All of the proximal humerus allograft had complete resorption of the proximal head within 3 years. The diaphyseal reconstructions with additional cancellous autografts incorporated within 3 years. The patient with the composite stem had two cup revisions, but the stem is doing well and we observed only a mild osteolysis at the proximal part of the graft between the 2nd and 5th year that remains stable. Fractures of the graft can be salvaged in most cases. Infection leads to the removal of the graft in almost all cases. Factors influencing the survival, remodeling and complications of the grafts are discussed. The regime of cryopreservation, fixation and loading of the graft influence these factors together with the use of autologous bone chips around the allograft-host junction as well as the application of chemotherapy or radiation. Fracture of the graft can be salvaged in most cases in contrary to infection that remains the most severe complication that can occur at any time period. Even with the improvement of tumor endoprostheses the use of allografts remains an optional solution especially in young patients.
Durable fixation may be difficult to achieve when significant bone loss is present, as it occurs in pelvic sarcoma resection and revision surgery of tumor implants. Purpose of this study was to review clinical results of primary and revision surgery of the pelvis and lower extremity in the setting of severe bone loss following limb salvage procedures for bone sarcoma using modular porous tantalum implants. Retrospective study of 15 patients (nine females, six males) undergoing primary or revision pelvic reconstruction (five patients) or revision surgery of a tumor implant of the hip (five patients), knee (four patients), and ankle (one patient) using porous tantalum implants was undertaken. Reason for the tumor implant was resection of bone sarcoma in 13 cases and tumor-like massive bone loss in the remaining two cases. Cause for revision was aseptic failure (nine patients) or deep infection (six patients); average age at the time of surgery was 31 years (16–61 yrs). Revision was managed in a staged fashion in all the six infected cases. All patients presented severe combined segmental and cavitary bone defects. Bone loss was managed in all patients using porous tantalum implants as augmentation of residual bone stock and associated with a megaprosthesis in eight cases (five proximal femur, two distal femur, one proximal tibia). Average follow-up was 4.5 years for hip/knee implants and 2.5 yrs for pelvic reconstructions (range 1–6.8 yrs). Minimum follow-up of two years was available in 11 cases.Purpose
Method
Numerous lumbo-pelvic reconstruction methods based on posterior construct and anterior cages have been proposed for cases involving total sacrectomy and lumbar vertebrectomy. These constructs create long lever arms and generate high cantilever forces across the lumbo-sacral junction resulting in implant failure or breakage. Biomechanical studies have shown that placing implants anterior to lumbo-sacral pivot point provide a more effective moment arm to resist flexion force and improve the ultimate strength of the construct. As a result more emphasis is placed on screws in the pelvis. We report a new and novel technique that allows for the placement of a pelvic ring construct to augment the posterior construct in a lumbo-pelvic reconstruction. In the prone position, two contoured hard rods are passed along the inner table of the pelvis under the iliac muscle from a minor posterior approach. The rods are connected to the posterior lumbo-pelvic construct with T-junction clamps. The patient is turned supine and the anterior ends of the rods are connected to a sub-cutaneously placed hard rod along the anterior abdominal wall with T-junction clamps. This in turn is fixed to the AIIS (anterior inferior iliac spine) with two poly axial screws. The whole construct resembles an oblong ring.Introduction/Aim
Method
The use of massive endoprostheses following bone tumour resection is well recognised. Where possible, joint salvage rather than joint replacement is usually attempted. However cases arise where there may be insufficient bone stock following tumour resection to allow fixation of a joint sparing prosthesis. We report a series of 4 patients (age4–12) treated between 1994 and 2008, in which irradiated autologous bone has been combined with a diaphyseal or distal femoral replacement in order to preserve the native hip joint. There were 3 cases of osteosarcoma and 1 cases of Ewings sarcoma. After a mean follow up of 53 months (range 9–168) all patients had survived without evidence of local recurrence or metastases. One implant was revised after 14 years following fracture of the extending component of the growing endoprosthesis. There have been no cases of loosening or peri-prosthetic fracture. This is the first report of irradiated autologous bone with joint sparing endoprostheses in the skeletally immature patient.
Percutaneous biopsies can lead to seeding of tumour cells along the biopsy tract. Correct surgical management requires preoperative identification and excision of the biopsy tract at time of surgery. These tracts become increasingly difficult to identify with time, leading to risk of inadequate excision of the biopsy tract and recurrence of the tumour at the biopsy site. We conducted a prospective study involving 45 patients who had tissue biopsies for bone and soft tissue tumours between February and May 2008. All the biopsies were performed by consultant radiologist under ultrasound or CT guidance. Case note analysis, patient history and examination at the time of surgery were used to collect data. 23 of 45 patients had accurate identification of the biopsy tract by the surgeon at the time of excision. The mean time between biopsy and excision was 52 days (range 6–140). 22 of 45 patients had unidentifiable biopsy site, with the mean time between biopsy and excision being 98 days(range 13–164) p=0.0004(paired t test). All 4 patients who received post-biopsy radiotherapy had unidentifiable biopsy site tract (mean duration 104 days) and 11 of the 18 patients who underwent neoadjuvant chemotherapy had an unidentifiable biopsy tract (mean duration 108 days). We concluded that identification of biopsy site was more difficult after 50 days, especially in patients who underwent radiotherapy and chemotherapy. Following this study, all the patients who had biopsies of tumours had the site marked with India ink tattoo. We, then prospectively reviewed 36 patients between July and September 2010 who underwent excision of bone and soft tissue tumours and had their biopsy sites marked with India ink tattoo. After needle biopsy, one drop of the dye was applied at the site of the biopsy. This was taken up by capillary action beneath the dermis and remained present until the patient returned for their definitive surgery. The biopsy site was easily identifiable by the patients and the operating surgeon in all 36 patients. The mean time between biopsy and surgery was 77 days (range 10–299 days). Tattooing of the skin enabled the surgeon to accurately excise the biopsy tract along with the tumour. We recommend this technique of tattooing of the biopsy site with India ink, as it is safe, easily recognisable and permits accurate excision of the tract (including the tattoo), therefore preventing biopsy tract recurrence.
The use of massive endoprostheses following bone tumour resection is well recognised. Where possible, joint salvage rather than joint replacement is usually attempted. However cases arise where there is insufficient bone following tumour resection to allow adequate fixation of a joint sparing prosthesis. We reporta series of 4 patients (aged 4–12), treated between 1994 and 2008, in which irradiated autologous bone has been combined with a diaphyseal or distal femoral replacement in order to preserve the native hip joint. There were 3 cases of osteosarcoma and 1 case of Ewing‘s sarcoma. After a mean follow-up of 53.5 months (range 9–168), all four patients are alive without evidence of local recurrence or metastases. One implant was revised after 14 years following fracture of the extending component of the growing endoprosthesis. There have been no cases of loosening or periprosthetic fracture. This is the first report of irradiated autologous bone with joint sparing endoprostheses in skeletally immature patients.