Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 47 - 47
1 Apr 2012
Seel E Reynolds J Nnadi C Lavy C Bowden G Wilson-Macdonald J Fairbank J
Full Access

To determine extent of correction in spinal osteotomy for fixed sagittal plane deformity. Radiographic retrospective cohort analysis using standardised standing whole spine radiographs. Level III evidence. 24 patients (14 females/10 males, av. 53.6 yrs) with sagittal plane deformity due to either ankylosing spondylitis (4), idiopathic (12), congenital (1), tumour (2), infectious (1), or posttraumatic (4) aetiologies. Max. 4 yrs follow up. Sagittal balance, lumbar lordosis correction, osteotomy angle, pelvic indices. Chevron (3), pedicle subtraction (17), and vertebral column resection (4) osteotomies were performed with the majority at L3 (9) and L2 (8). The C7-S1 sagittal vertical axis demonstrated a preoperative decompensation averaging 12.0 cm (range -7 to 37) with 55% of patients achieving normal sagittal balance postoperatively. Lumbar lordosis increased from 28.9° (range -28 to 63) to 48.9° (range 12 to 69) (22.3° av. correction). L3 osteotomy angle was largest, average 31° (range, 16 to 47). There were 11 complications comprising; major (1) and minor (1) neurological, junctional kyphosis (3), metalwork problems (2), dural tear (2) and infection (2). Four patients required additional surgery at latest follow-up. Technical outcome was good 11(50%), fair 8(36%), poor 3(14%). Spinal osteotomy is a very effective technique to correct fixed sagittal imbalance and provide biomechanical stability. The high complication rate mandates a careful assessment of the risk/benefit ratio before undertaking what is a major reconstructive procedure. Most patients are satisfied, particularly when sagittal balance is achieved


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 29 - 29
1 Oct 2014
Molloy S Butler J Selvadurai S Whitman P
Full Access

To describe a staged surgical technique to correct significant progressive sagittal malalignment, without the need for 3-column osteotomy, in patients with prior long thoracolumbar instrumentation for scoliosis and to evaluate the radiographic and clinical outcome from this surgical strategy.

A small cohort study (n=6) of patients with significant sagittal malalignment following extensive thoracolumbar instrumented fusions for scoliotic deformity. Radiographic parameters analysed included pelvic incidence, pelvic tilt, sacral slope, lumbar lordosis, thoracic kyphosis and sagittal vertical axis. Clinical outcome measures collected included EQ-5D, ODI, SRS 22 and VAS Pain Scores.

3 patients had 2-stage anterior release and instrumented fusion followed by a posterior instrumented fusion 3 patients with a large sagittal plane deformity had a 3-stage surgical technique. All patients achieved an excellent correction of sagittal alignment, with no surgical complications and excellent health related quality of life (HRQOL) outcome measures at follow-up. There was no symptomatic non-unions or implant failures including rod breakages.

We present a safe and effective surgical strategy to treat the complex problem of progressive sagittal malalignment in the previously instrumented adult deformity patient, avoiding the need for 3-column osteotomies in the lumbar spine.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 2 - 2
1 Nov 2021
Faldini C
Full Access

Complex spinal deformities can cause pain, neurological symptoms and imbalance (sagittal and/or coronal), severely impairing patients’ quality of life and causing disability. Their treatment has always represented a tough challenge: prior to the introduction of modern internal fixation systems, the only option was an arthrodesis to prevent worsening of the deformity. Then, the introduction of pedicle screws allowed the surgeons to perform powerful corrective manoeuvres, distributing forces over multiple levels, to which eventually associate osteotomies. In treating flexible coronal deformities, in-ternal fixation and corrective manoeuvres may be sufficient: the combination of high density pedicle screws and direct vertebral rotation revolutionized surgical treatment of scoliosis. However, spinal osteotomies are needed for correcting complex rigid deformities; the type of osteot-omy must be chosen according to the aetiology, type and apex of the deformity. When dealing with large radius deformities, spread over multiple levels and without fusion, multiple posterior column os-teotomies such as Smith-Petersen and Ponte (asymmetric, when treating scoliosis) can be performed, dissipating the correction over many levels. Conversely, the management of a sharp, angulated de-formity that involves a few vertebral levels and/or with bony fusion, requires more aggressive 3 col-umn osteotomies such as Pedicle Subtraction Osteotomies (PSO), Bone Disc Bone Osteotomies (BDBO) or Vertebral Column Resection (VCR). Sometimes the deformity is so severe that cannot be corrected with only one osteotomy: in this scenario, multilevel osteotomies can be performed


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 236 - 236
1 Sep 2005
Tokala D Mukerjee K Grevitt M Freeman B Webb J
Full Access

Study Design: Retrospective chart review. Summary of Background Data: Spinal osteotomy in ankylosing spondylitis is performed to restore forward gaze and sagittal balance. Closing wedge lumbar osteotomy and polysegmental thoracic osteotomy in the same patient has not been reported. Objective: To study the factors affecting correction of sagittal balance. Subjects: 27 patients (23 male, 4 female) operated between 1989–2002: average age 46 years: minimum follow-up: 18 months. 19 patients had lumbar osteotomy alone, 6 had both lumbar and thoracic osteotomies and 2 had thoracic osteotomy alone. Three groups were identified: A) patients with decreased lumbar-lordosis and normal thoracic-kyphosis B) Normal / increased lumbar-lordosis and increased thoracic-kyphosis C) Decreased lumbar-lordosis and increased thoracic-kyphosis. Results: Preoperatively, mean sagittal balance was +103 mm, thoracic-kyphosis 61 degrees, and lumbar-lordosis 25 degrees. Three months postoperatively, sagittal balance was +36 mm, thoracic-kyphosis 55 degrees, and lumbar-lordosis 49 degrees. At final follow-up sagittal balance was +44 mm, thoracic-kyphosis 57 degrees and lumbar-lordosis 46 degrees. In patients who had thoracic osteotomies, thoracic-kyphosis of 78 degrees was corrected to 48 degrees. There were no spinal cord injuries or permanent nerve root palsies. Six patients had deterioration of sagittal balance (SB) (> 45 mm), 5 of them required cervical osteotomy. There was significant association between post-operative thoracic-kyphosis of > 60 degrees and SB deterioration (p-value < .001, sensitivity 100%, specificity 75%). Statistically there was no significant association between SB deterioration and post-operative sagittal balance, lumbar-lordosis, osteotomy-angle and extent of fixation. Conclusions: Correction of thoracic-kyphosis affected final sagittal balance significantly. Consideration should be given to the simultaneous performance of lumbar osteotomy and polysegmental thoracic osteotomies in selected patients to obtain greater correction and restoration of near normal sagittal balance


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 27 - 27
1 Jan 2004
Lazennec J Arafati N Charlot N Aillant G
Full Access

Purpose: Single-segment wedge osteotomy is classically proposed to correct for kyphosis subsequent to ankylosing spondylitits. We analysed the usefulness of this technique for other indications (revision procedures for flat back and deformed calluses of the lumbar spine) by studying the overall sagittal balance of the spine and tilt of the sacrum. Material and methods: Between 1980 and 1999, we retained 68 patients with complet clinical and radiological data (37 patients with ankylosing spondylitis and 31 patients with “post-operative” flat back, including nine trauma cases and 22 degenerative spines). Opening osteotomy was performed in the first 19 patients and closure osteotomy in the next 49. The correction level was L2L3 in 26 patients and lower in 42. Digitalised lateral views of the entire spine were obtained at minimum follow-up of three years to measure:. - posterior displacement of T9 (between the vertical line and a line joining the geometric centre of T9 and the femoral heads (normal 11±5°),. - tilt of the sacrum (angle between the horizontal line and a line tangent to the superior surface of the sacrum (normal 41±5°). Results and discussion: The overall angle of local correction was 44° and the correction of T9 displacement was 30.6°. For the low osteotomies, the local correction was 49° and the T9 displacement was +28° (−2° to +26°). Tilt of the sacrum varied from 4° to 7°. Tilt of the sacrum was influenced more and more for lower and lower osteotomies. T9 displacement stabilised between 12° and 26° (mean 19°) irrespective of the osteotomy level, although the angle of local correction was greater (up to 60°). This discordance was explained by adaptation of the pelvis. Seven patients developed secondary functional kyphosis (limited hip movement preventing the necessary adaptation to the overall correction of the sagittal balance). Conclusion: Single-segment spinal osteotomy remains difficult but offers very important correction possibilities affecting the position of the trunk and adaptation of the pelvis. The level for the correction must be chosen with care because it conditions final adjustment and function consequences affecting the pelvis


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 346 - 347
1 Nov 2002
Robertson P Rawlinson H Hadlow A
Full Access

Introduction: Large anterior column defects of the thoracolumbar spine, after fracture decompression, tumour or other pathological resection, or spinal osteotomy present significant difficulties in respect to autograft procurement, donor site morbidity, graft instability and residual spinal instability. Titanium Mesh Cages for reconstruction thoracolumbar vertebral body defects (after corpectomy) offer an alternative to structural iliac crest autograft or allograft. The use of TMCs for inter-body reconstruction has been addressed yet the use of larger cages for corpectomy reconstruction has not. This study examines implant stability and deformity correction of TMCs following corpectomy reconstruction in the thoracolumbar spine. Methods: Independent radiological review before, after and at follow-up (one year) was performed for 27 patients having implantation of TMCs. Measurement of thoracolumbar kyphosis was performed before surgery, immediately post operatively, and at one year follow-up. Correction of kyphosis was expressed both as angular improvement and percentage improvement. Cage settling into adjacent vertebral bodies, translational deformities and any evidence of implant failure was sought. Results: Indications for reconstruction with TMC included burst fracture (13), post traumatic kyphosis (8), primary tumour resection (3), debridement of infection (1), and stabilisation of severe kyphotic deformity in achodroplasia with associated spinal stenosis requiring decompression (2). Desired resection and decompression was achieved as indicated. Correction of kyphosis was a mean of 12 deg / 61% (range 0 – 38 deg, 0–85%). No cage moved. One patient had kyphosis recurrence of > 5 deg (12 deg). Five patients demonstrated some settling of the cage within adjacent vertebral bodies (1–8%, mean 3.4% of height loss over construct length – the vertebral body above to the body below). Translational malposition of three cages occurred. One of these cases demonstrated the maximum settling and another was associated with the only case of instrumentation failure. Clinically significant spinal canal intrusion did not occur. One cage demonstrated buckling of the wall without evidence of other problem and the clinical result was excellent. Discussion: Use of TMCs is safe when managing vertebral body reconstruction. Significant kyphosis or translational deformity has not occurred, however minor cage settling within adjacent vertebra may occur. Fusion rate is unknown as the cage mesh obscures graft maturation. Construct failure has only occurred after pre operative translational malalignment could not be corrected. This demanding procedure offers a reconstructive option with superior structural stability and reduced bone grafting morbidity


Bone & Joint Open
Vol. 1, Issue 7 | Pages 405 - 414
15 Jul 2020
Abdelaal A Munigangaiah S Trivedi J Davidson N

Aims

Magnetically controlled growing rods (MCGR) have been gaining popularity in the management of early-onset scoliosis (EOS) over the past decade. We present our experience with the first 44 MCGR consecutive cases treated at our institution.

Methods

This is a retrospective review of consecutive cases of MCGR performed in our institution between 2012 and 2018. This cohort consisted of 44 children (25 females and 19 males), with a mean age of 7.9 years (3.7 to 13.6). There were 41 primary cases and three revisions from other rod systems. The majority (38 children) had dual rods. The group represents a mixed aetiology including idiopathic (20), neuromuscular (13), syndromic (9), and congenital (2). The mean follow-up was 4.1 years, with a minimum of two years. Nine children graduated to definitive fusion. We evaluated radiological parameters of deformity correction (Cobb angle), and spinal growth (T1-T12 and T1-S1 heights), as well as complications during the course of treatment.