Construction of a functional skeleton is accomplished
through co-ordination of the developmental processes of chondrogenesis,
osteogenesis, and synovial joint formation. Infants whose movement Cite this article:
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal
Osteoclasts (OCs) are multinucleated cells that play a pivotal role in
Introduction. Cartilage homeoprotein 1 (CART-1) is a homeoprotein which has been suggested to play a role in chondrocyte differentiation and in
INTRODUCTION. Endochondral ossification in the growth plate is directly responsible for skeletal growth and its de novo bone-generating activity. Growth plates are vulnerable to disturbances that may lead to abnormal
TGF-beta signaling has a well established role not only in adult organ homeostasis but also in
Aims. Vertebrates have adapted to life on Earth and its constant gravitational field, which exerts load on the body and influences the structure and function of tissues. While the effects of microgravity on muscle and bone homeostasis are well described, with sarcopenia and osteoporosis observed in astronauts returning from space, the effects of shorter exposures to increased gravitational fields are less well characterized. We aimed to test how hypergravity affects early cartilage and
Osteoarthritis is a global problem and the treatment of early disease is a clear area of unmet clinical need. Treatment strategies include cell therapies utilising chondrocytes e.g. autologous chondrocyte implantation and mesenchymal stem/stromal cells (MSCs) e.g. microfracture. The result of repair is often considered suboptimal as the goal of treatment is a more accurate regeneration of the tissue, hyaline cartilage, which requires a more detailed understanding of relevant biological signalling pathways. In this study, we describe a modulator of regulatory pathways common to both chondrocytes and MSCs. The chondrocytes thought to be cartilage progenitors are reported to reside in the superficial zone of articular cartilage and are considered to have the same developmental origin as MSCs present in the synovium. They are relevant to cartilage homeostasis and, like MSCs, are increasingly identified as candidates for joint repair and regenerative cell therapy. Both chondrocytes and MSCs can be regulated by the Wnt and TGFβ pathways. Dishevelled Binding Antagonist of Beta-Catenin (Dact) family of proteins is an important modulator of Wnt and TGFβ pathways. These pathways are key to MSC and chondrocyte function but, to our knowledge, the role of DACT protein has not been studied in these cells. DACT1 and DACT2 were localised by immunohistochemistry in the developing joints of mouse embryos and in adult human cartilage obtained from knee replacement. RNAi of DACT1 and DACT2 was performed on isolated chondrocytes and MSCs from human bone marrow. Knockdown efficiency and cell morphology was confirmed by qPCR and immunofluorescence. To understand which pathways are affected by DACT1, we performed next-generation sequencing gene expression analysis (RNAseq) on cells where DACT1 had been reduced by RNAi. Top statistically significant (p < 0 .05) 200 up and downregulated genes were analysed with Ingenuity® Pathway Analysis software. We observed DACT1 and DACT2 in chondrocytes throughout the osteoarthritic tissue, including in chondrocytes forming cell clusters. On the non-weight bearing and visually undamaged cartilage, DACT1 and DACT2 was localised to the articular surface. Furthermore, in mouse embryos (E.15.5), we observed DACT2 at the interzones, sites of developing synovial joints, suggesting that DACT2 has a role in cartilage progenitor cells. We subsequently analysed the expression of DACT1 and DACT2 in MSCs and found that both are expressed in synovial and bone marrow-derived MSCs. We then performed an RNAi knockdown experiment. DACT1 knockdown in both chondrocyte and MSCs caused the cells to undergo apoptosis within 24 hours. The RNA-seq study of DACT1 silenced bone marrow-derived MSCs, from 4 different human subjects, showed that loss of DACT1 has an effect on the expression of genes involved in both TGFβ and Wnt pathways and putative link to relevant cell regulatory pathways. In summary, we describe for the first time, the presence and biological relevance of DACT1 and DACT2 in chondrocytes and MSCs. Loss of DACT1 induced cell death in both chondrocytes and MSCs, with RNA-seq analysis revealing a direct impact on transcript levels of genes involved in the Wnt and TFGβ signalling, key regulatory pathways in
Mesenchymal stem cells (MSCs) have been long studied for their role in
Dynamic loading is necessary for the preservation of native cartilage, but mechanical disuse is one major risk factor for osteoarthritis (OA). As post-transcriptional regulators, microRNAs (miRs) represent promising molecules to quickly adjust the cellular transcriptome in a stimulus-dependent manner. Several miR clusters were related to
Introduction. Poor osseointegration of cementless implants is the leading clinical cause of implant loosening, subsidence, and replacement failure, which require costly and technically challenging revision surgery. The mechanism of osseointegration requires further elucidation. We have recently developed a novel titanium implant for the mouse tibia that maintains in vivo knee joint function and allows us to study osseointegration in an intra-articular, load-bearing environment. Vascular endothelial growth factor (VEGF) is one of the most important growth factors for regulation of vascular development and angiogenesis. It also plays critical roles in
There has been a reluctance, until relatively recently, to consider replacement of the hip in patients with substantial neuromuscular imbalance. This relates to many factors, including the young age of many (such as cerebral palsy in the older teen and young adult), developmental anatomic abnormality, oft-present poor bone health, neuromuscular imbalance, and the risk of complication; especially dislocation. Mental retardation also introduces challenges with rehabilitation and an increased burden on the family and societal support systems if the outcome is to be maximised. With the development of newer techniques and technology, and the emergence of encouraging outcome studies, these patients can be more easily offered predictable relief of pain, a reasonable chance of improved function, longevity of the reconstruction, and an acceptable risk of complication. A large number of background neurological diagnoses can lead to hip degeneration, or can introduce increased complexity during management of hip degeneration unrelated to that background. Be that as it may, a short list of fundamental questions is common to all and will help guide management:. Important questions to be addressed include:. 1. Did the NV imbalance precede
This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.Aims
Methods
Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive. Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.Aims
Methods
Knee osteoarthritis (OA) involves a variety of tissues in the joint. Gene expression profiles in different tissues are of great importance in order to understand OA. First, we obtained gene expression profiles of cartilage, synovium, subchondral bone, and meniscus from the Gene Expression Omnibus (GEO). Several datasets were standardized by merging and removing batch effects. Then, we used unsupervised clustering to divide OA into three subtypes. The gene ontology and pathway enrichment of three subtypes were analyzed. CIBERSORT was used to evaluate the infiltration of immune cells in different subtypes. Finally, OA-related genes were obtained from the Molecular Signatures Database for validation, and diagnostic markers were screened according to clinical characteristics. Quantitative reverse transcription polymerase chain reaction (qRT‐PCR) was used to verify the effectiveness of markers.Aims
Methods
Introduction: The lower limb deformities in relation to hip dysplasia and genu valgum seen in Hurler’s Syndrome are well recognised. Bone marrow transplantation has improved the survival of patients with Hurler’s Syndrome, reversing many of the clinical features associated with it. This is of increasing importance because the musculoskeletal manifestations do not appear to be affected. Methods: Between 1990 and 2003, 18 patients have been successfully engrafted and have been followed up for a mean of 6.8 years (range 18 months to 15 years) at Royal Manchester Children’s Hospital. We describe the lower limb problems and their management in these patients. We report on their
Aims: The purpose of this study is to evaluate the experience of the Prague tumour centre with total hip replacements after tumour resections. Methods: 180 THR were implanted between 1971 and 2001 in the Prague tumour centre after resections of primary and secondary bone tumours. 158 had special long and 22 standard stems. The patients were followed in a minimum one-year interval both clinically and radiologically until their death or for at least þve years. Clinical and radiological data are evaluated. Results: Among the 158 long stem femoral components there were 63 primary bone tumours (10 Ewing sarcoma, 10 myeloma 9 chondrosarcoma, 7 osteosarcoma, 7 malignant þbrous histiocytoma, 4 malignant lymphoma, 4 giant cell tumours and 15 other benign tumours). Most of the 95 metastatic cases originated in the breast, kidney and lungs. The range of motion was surprisingly good when muscles were reattached around the stem. Luxations occurred until the antiluxating cup was developed. Even if these patients showed a higher risk of infection, reoperation was not a severe problem. Conclusions: THR with a long stem is a good salvage method after primary tumour resection around the hip. It is a method of choice in meta-static patients with or without pathologic fractures especially in solitary bone metastasis. Luxation can be a problem when not using an antiluxa-ting cup as well as replacement in children with unþnished
Introduction. Despite extensive research, the cause of adolescent idiopathic scoliosis (AIS) is still largely unclear. Girls with AIS tend to be taller and leaner, and have a lower body-mass index (BMI) and lower bone mass, than do healthy girls. Recent MRI studies have shown the presence of relative anterior spinal overgrowth in girls with AIS. The lower bone mineral status and BMI could be related to dysfunctional central regulation pathway of growth, bodyweight, and bone metabolism. Following several interesting reports on the role of leptin in regulation of the above pathway in animals and human beings, our recent study has shown a low leptin concentration in girls with AIS girls compared with healthy adolescents. This finding leads to our new hypothesis that abnormal leptin bioavailability could be associated with the lower bodyweight, lower bone mineral density, and relatively disproportional endochondral skeletal growth in AIS. This study aimed to investigate the leptin bioavailability in girls with AIS. Methods. 53 girls with AIS and 27 healthy girls (aged 11–16 years) were recruited in this preliminary study. Clinical and anthropometric data were obtained. Blood samples were obtained for ELISA of leptin and soluble leptin receptor (sOB-R). Independent Student's t test and multivariate regression were used in group comparison. Results. The AIS group had significantly lower BMI and longer arm span than did controls. Additionally, girls with AIS had significantly higher soluble leptin receptor concentrations (22·1 ng/mL [□}6·9] vs 17·8 ng/mL [4·4]; p<0·01). However, the leptin concentration (7·6 ng/mL [□}5·3] vs 8·7 ng/mL [□}6·0]) and the leptin/sOB-R ratio (0·38 [□}0·28] vs 0·56 [□}0·47]) were similar to that of the controls. In girls with AIS, the leptin, sOB-R, and the leptin/sOB-R ratio correlated well with bodyweight and BMI. After adjustment for BMI, sOB-R in girls with AIS was significantly higher than in controls (r=0·37, p=0·042). Conclusions. This preliminary report showed that the soluble leptin receptor could be abnormal in girls with AIS. Leptin and sOB-R are related to bodyweight. sOB-R is a major modulator of leptin concentration in circulation, the abnormality of which may lead to the retention of leptin in the circulation and thus abnormal regulatory effect. In this study, girls with AIS had lower BMI and longer arm span, which may reflect the possible change resulting from abnormal leptin bioavailability. Further longitudinal study with larger sample size would be useful to help to understand the long-term effect of the low leptin and high sOB-R in girls with AIS on their bodyweight and
Introduction and Aims: A previous study showed the inhibitory effect of 30% metaphyseal lengthening on tibial growth (Lee 1993). This study was to investigate the effect of 30% diaphyseal lengthening of tibia on tibial growth plate and growth. Method: 32 immature rabbits were equally divided into two groups: lengthening and sham. A bilateral external fixator was applied to the tibia and a mid-diaphyseal osteotomy performed. The lengthening group had their tibia distracted on the fifth day after the surgery at a rate of 0.4 mm twice daily until the achievement of 30% lengthening. In each group, half were sacrificed at the end of lengthening and another half after an additional five weeks. Standard radiographs were used to measure the lengths of the tibiae from the most proximal part of the intercondylar eminence to the most distal part of the medial malleollus. The actual length gained was measured by subtracting the pre-operative distance from the lengthened distance using the central points of two middle wires in the tibia as reference points. Specimens from the proximal and distal tibia were sectioned longitudinally in the midcoronal plane and the mean growth plate thickness was calculated from several measurements taken at the middle third of both medial and lateral halves of the section. Results: In the sham group, the thickness of the growth plates continued to increase with
Summary Statement. Bone stress fracture triggers a rapid increase in blood flow in association with mast cell production of inducible nitric oxide synthase (iNOS). NOS inhibition blocks the increase in blood flow and reduces woven bone formation needed for stress fracture healing. Introduction. Vascular-bone interactions are critical in