Aims. Leg length discrepancy (LLD) is a common pre- and postoperative issue in total hip arthroplasty (THA) patients. The conventional technique for measuring LLD has historically been on a non-weightbearing anteroposterior pelvic radiograph; however, this does not capture many potential sources of LLD. The aim of this study was to determine if long-limb EOS radiology can provide a more reproducible and holistic measurement of LLD. Methods. In all, 93 patients who underwent a THA received a standardized preoperative EOS scan, anteroposterior (AP) radiograph, and clinical LLD assessment. Overall, 13 measurements were taken along both anatomical and functional axes and measured twice by an orthopaedic fellow and surgical planning engineer to calculate intraoperator reproducibility and correlations between measurements. Results. Strong correlations were observed for all EOS measurements (r. s. > 0.9). The strongest correlation with AP radiograph (inter-teardrop line) was observed for functional-ASIS-to-floor (functional) (r. s. = 0.57), much weaker than the correlations between EOS measurements. ASIS-to-ankle measurements exhibited a high correlation to other linear measurements and the highest ICC (r. s. = 0.97). Using anterior superior iliac spine (ASIS)-to-ankle, 33% of patients had an absolute LLD of greater than 10 mm, which was statistically different from the inter-teardrop LLD measurement (p < 0.005). Discussion. We found that the conventional measurement of LLD on AP
Aims. Leg length inequality following total hip replacement remains common. In an effort to reduce this occurrence, surgeons undertake pre-operative templating and use various forms of intra-operative measurements, including computer navigation. This study aims to delineate which measurement technique is most appropriate for measuring leg length inequality from a
Patients with abnormal spinopelvic mobility are at increased risk for hip instability. Measuring the change in sacral slope (ΔSS) with standing and seated lateral radiographs is commonly used to determine spinopelvic mobility pre-operatively. Sacral slope should decrease at least 10 degrees to demonstrate adequate accommodation. Accommodation of <10 deg necessitates acetabular component position change or use of a dual mobility implant. There is potential for different ΔSS measurements in the same patient based on sitting posture. 78 patients who underwent THA were reviewed to quantify the variability in pre-operative spinopelvic mobility when two different seated positions (relaxed sitting v. pre-rise sitting) were used in the same patient.Introduction
Methods
Aims. Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative
Acetabular retroversion is a recognised cause of hip impingement. Pelvic tilt influences acetabular orientation and is known to change in different functional positions. While previously reported in patients with developmental dysplasia of the hip, positional changes in pelvic tilt have not been studied in patients with acetabular retroversion. We retrospectively analysed supine and standing AP
Acetabular retroversion is a recognised cause of hip impingement. Pelvic tilt influences acetabular orientation and is known to change in different functional positions. While previously reported in patients with developmental dysplasia of the hip, positional changes in pelvic tilt have not been studied in patients with acetabular retroversion. We retrospectively analysed supine and standing AP
Increasing the accuracy of information provided through X-Rays maximises pre-operative planning. Aim of this project is to determine the necessity of calibration probes that would improve the accuracy of pre-operative templating. This is a retrospective study involving leg length and pelvis X-Rays performed across the NHS Lanarkshire from 01/03/2023 until 31/04/2024. A total of 87 leg length X-Rays were identified, 18 had a calibration probe present. Leg length was measured on each and the X-Rays were calibrated against the existing probe. In 66.7% of cases there was a major leg length discrepancy of over 2cm between the pre-calibrated and post-calibrated X-Rays. Pelvic X-Rays of 80 patients that underwent total hip replacement were reviewed. Preoperative templating was compared to the implants inserted. An average of 1.94 discrepancy in the size of the acetabular implant was identified whilst in 30 cases the size of the femoral stem was incorrect by at least 1 size. Magnification of 119.7% on X-Rays was found to provide the most accurate templating. Seventy seven cases of pelvic X-Rays before and after hip hemiarthroplasty were also reviewed. The implant head was templated incorrectly in 74% of cases and the stem in 51%. It was identified that
Human error is usually evaluated using statistical descriptions during radiographic annotation. The technological advances popularized the “non-human” landmarking techniques, such as deep learning, in which the error is presented in a confidence format that is not comparable to that of the human method. The region-based landmark definition makes an arbitrary “ground truth” point impossible. The differences in patients’ anatomies, radiograph qualities, and scales make the horizontal comparison difficult. There is a demand to quantify the manual landmarking error in a probability format. Taking the measurement of pelvic tilt (PT) as an example, this study recruited 115 sagittal
The lateral wall thickness (LWT) in trochanteric femoral fractures is a known predictive factor for postoperative fracture stability. Currently, the AO/OTA classification uses a patient non-specific measure to assess the absolute LWT (aLWT) and distinguish stable A1.3 from unstable A2.1 fractures based on a threshold of 20.5 mm. This approach potentially results in interpatient deviations due to different bone morphologies and consequently variations in fracture stability. Therefore, the aim of this study was to explore whether a patient-specific measure for assessment of the relative LWT (rLWT) results in a more precise threshold for prediction of unstable fractures. Part 1 of the study evaluated 146
Accurate measurement of pelvic tilt (PT) is critical in diagnosing hip and spine pathologies. Yet a sagittal
Acetabular retroversion (ARV) is a cause of femoroacetabular impingement leading to hip pain and reduced range of motion. We aimed to describe the radiological criteria used for diagnosing ARV in the literature and report on the outcomes of periacetabular osteotomy (PAO) and hip arthroscopy (HA) in its management. A systematic review using PRISMA guidelines was conducted on the MEDLINE, CINAHL, EMBASE, COCHRANE database in December 2022. English-language studies reporting outcomes of PAO, or open or arthroscopic interventions for ARV were included. From an initial 4203 studies, 21 non-randomised studies met the inclusion criteria. Eleven studies evaluated HA for ARV, with average follow-up ranging from 1 to 5 years, for a cumulative number of 996 patients. Only 3/11 studies identified ARV using AP standardized
Pelvic tilt (PT) is always described as the pelvic orientation along the transverse axis, yet four PT definitions were established based on different radiographic landmarks: anterior pelvic plane (PT. a. ), the centres of femoral heads and sacral plate (PT. m. ), pelvic outlet (PT. h. ), and sacral slope (SS). These landmarks quantify a similar concept, yet understanding of their relationships is lacking. Some studies referred to the words “pelvic tilt” for horizontal comparisons, but their PT definitions might differ. There is a demand for understanding their correlations and differences for education and research purposes. This study recruited 105 sagittal
Background: Acetabular retroversion has been proposed to contribute to the development of osteoarthritis of the hip. For the diagnosis of this condition, conventional AP
Introduction: It could be shown that an ample number of classical hip parameters for radiographic quantification of hip morphology on anteroposterior (AP)
Aims. To monitor the performance of services for developmental dysplasia of the hip (DDH) in Northern Ireland and identify potential improvements to enhance quality of service and plan for the future. Methods. This was a prospective observational study, involving all infants treated for DDH between 2011 and 2017. Children underwent clinical assessment and radiological investigation as per the regional surveillance policy. The regional radiology data was interrogated to quantify the use of ultrasound and ionizing radiation for this population. Results. Evidence-based changes were made to the Northern Ireland screening programme, including an increase in ultrasound scanning capacity and expansion of nurse-led screening clinics. The number of infant hip ultrasound scans increased from 4,788 in 2011, to approximately 7,000 in 2013 and subsequent years. The number of hip radiographs on infants of less than one year of age fell from 7,381 to 2,208 per year. There was a modest increase in the treatment rate from 10.9 to 14.3 per 1,000 live births but there was a significant reduction in the number of closed hip reductions. The incidence of infants diagnosed with DDH after one year of age was 0.30 per 1,000 live births over the entire period. Conclusion. Improving compliance with the regional infant hip screening protocols led to reduction in operative procedures and reduced the number of
The long-term result of a total hip arthroplasty (THA) strongly depends on the correct component positioning of the acetabular cup and stem. To measure cup orientation out of a postoperative anteroposterior (AP)
Late presentation of DDH continues to remain a major problem particularly in the developing countries. Femoro-Acetabular Zones (FAZ) system is created to find a relation between acetabular maturity and severity of dislocation, in one hand, and the success of closed reduction, on the other hand. We hypnosis that the lower the acetabular index and the closer the femoral head to the acetabulum, the more likely the success of treatment. Thus, a retrospective study was performed on late diagnosed DDH hips that underwent closed treatment at a particular hospital in the Middle East. FAZ are drawn on the AP view of the
Introduction. The periacetabular osteotomy (PAO) improves hip joint mechanics in patients with symptomatic dysplasia. As a consequence of the multi-planar acetabular re-orientation, the course of the iliopsoas tendon over the hip may be affected, potentially resulting in iliopsoas tendon-related pain. At present, little information regarding the incidence of iliopsoas-related pathology following PAO exists. We aimed to identify the incidence of iliopsoas-related pain following PAO. Secondarily, we aimed to identify any risk factors associated with this pathology. Methods. We retrospectively reviewed the PAO's performed from 2014–2017, for symptomatic dysplasia in our unit (single-surgeon, minimum 1-year follow-up). All patients with adequate