In this in vitro study of the
hip joint we examined which soft tissues act as primary and secondary
passive rotational restraints when the hip joint is functionally
loaded. A total of nine cadaveric left hips were mounted in a testing
rig that allowed the application of forces, torques and rotations
in all six degrees of freedom. The hip was rotated throughout a
complete range of movement (ROM) and the contributions of the iliofemoral
(medial and lateral arms), pubofemoral and ischiofemoral ligaments
and the ligamentum teres to rotational restraint was determined
by resecting a ligament and measuring the reduced torque required
to achieve the same angular position as before resection. The contribution
from the acetabular
Aims. Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters. Methods. We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis. Results. The studies assessed different hip conditions like
The fibrocartilaginous
Coxarthrosis is a common problem. Changes in all articular structures during coxarthrosis were described extensively, besides
The purpose of the study was to describe the normal anatomy of glenoid
The purpose of the study was to describe the normal anatomy of glenoid
Introduction:. Most cases of hip osteoarthritis (OA) are believed to be caused by alterations in joint contact mechanics resulting from pathomorphologies such as acetabular dysplasia and acetabular retroversion. Over the past 13 years, our research group has focused on developing approaches for patient-specific modeling of cartilage and
Introduction:. The sealing function of the acetabular
The aim of this work was to define the tensile material properties of the glenoid
To the best of our knowledge, this prospective study is the first to investigate the prevalence of acetabular
Objectives: During the past decade, acetabular
In this study, we evaluated the
The shape of the glenoid can vary between pear and oval, depending on the presence of a glenoid notch. We measured the glenoid notch angle (the angle between the superior and inferior part of the anterior glenoid rim) in 53 embalmed cadavers and investigated its relationship with the labral attachment to the glenoid at that point. The attachment of the anterosuperior
Purpose: The glenoid
Background. The acetabular
The acetabular
Aim: The detachment of superior glenoid
Purpose of the study:
Background: The positioning of the acetabular component is of critical importance in total hip arthroplasty. Due to the orientation of the acetabulum and limitations of observation imposed at the operative site mal-positioning is common. We believe that by utilising the transverse acetabular ligament (TAL) and acetabular
This in-vitro study finds which hip joint soft tissues act as primary and secondary passive internal and external rotation restraints so that informed decisions can be made about which soft tissues should be preserved or repaired during hip surgery. The capsular ligaments provide primary hip rotation restraint through a complete hip range of motion protecting the