Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 71 - 71
11 Apr 2023
Pelegrinelli A Kowalski E Ryan N Dervin G Moura F Lamontagne M
Full Access

The study compared thigh-shank and shank-foot coordination during gait before and after total knee arthroplasty (TKA) with controls (CTRL). Twenty-seven patients (male=15/female=12; age=63.2±6.9 years) were evaluated one month prior to and twelve months after surgery, and compared to 27 controls (male=14/female=13; age=62.2±4.3). The participants were outfitted with a full-body marker set. Gait speed (normalized by leg length) was calculated. The time series of the thigh, shank, and foot orientation in relation to the laboratory coordinate system were extracted. The coordination between the thigh-shank and shank-foot in the sagittal plane were calculated using a vector coding technique. The coupling angles were categorized into four coordination patterns. The stance phase was divided into thirds: early, mid, and late stance. The frequency of each pattern and gait speed were compared using a one-way ANOVA with a post-hoc Bonferroni correction. Walking speed and shank-foot coordination showed no differences between the groups. The thigh-shank showed differences. The pre-TKA group showed a more in-phase pattern compared to the CTRL group during early-stance. During mid-stance, the pre- and post-TKA presented a more in-phase pattern compared to the CTRL group. Regarding shank-foot coordination, the groups presented an in-phase and shank pattern, with more shank phase during mid-stance and more in-phase during late-stance. The pre-TKA group showed greater differences than the post-TKA compared to the controls. The more in-phase pattern in the pre- and post-TKA groups could relate to a reduced capacity for the thigh that leads the movement. During mid-stance in normal gait, the knee is extending, where the thigh and shank movements are in opposite directions. The in-phase results in the TKA groups indicate knee stiffness during the stance phase, which may relate to a muscular deficit or a gait strategy to reduce joint stress


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 61 - 61
1 Dec 2021
Naghavi SA Hua J Moazen M Taylor S Liu C
Full Access

Abstract. Objectives. Currently, total hip replacement surgery is an effective treatment for osteoarthritis, where the damaged hip joint is replaced with an artificial joint. Stress shielding is a mechanical phenomenon that refers to the reduction of bone density as a result of altered stresses acting on the host bone. Due to solid metallic nature and high stiffness of the current orthopaedic prostheses, surrounding bones undergo too much bone resorption secondary to stress shielding. With the use of 3D printing technology such as selective laser melting (SLM), it is now possible to produce porous graded microstructure hip stems to mimics the surrounding bone tissue properties. Method. In this study we have compared the physical and mechanical properties of two triply periodic minimal surface (TPMS) lattice structure namely gyroid and diamond TPMS. Based on initial investigations, it was decided to design, and 3D print the gyroid and diamond scaffolds having pore size of 800 and 1100 um respectively. Scaffold of each type of structure were manufactured and were tested mechanically in compression (n=8), tension (n=5) and bending (n=1). Results. Upon FEA validation of the scaffold in Abaqus, the desired scaffold for hip implant application was evaluated to have a young's modules of 12.15 GPa, yield strength of 242 MPa and porosity of 55%. Topology and lattice optimization were performed using nTopology to design an optimised graded porous hip implant based on stress shielding reduction. It was understood that the designed optimised hip implant can reduce the stress shielding effect by more than 65% when compared to the conventional generic implant. Conclusions. The designed hip implant presented in this work shows clinical promise in reducing bone loss while having enhanced osseointegration with the surrounding cortical bones. Hence, this will help reduce the risk of periprosthetic fracture and the probability of revision surgery


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 309 - 310
1 Mar 2004
Vengust R Iglic VK Iglic A Antolic V
Full Access

Background and Aims: Concentric pressure of the femoral head on acetabulum is the necessary prerequisite for normal hip development. In the case of diminished hip joint area an elevation of hip joint pressure ensues. If this pressure elevation lasts for a long period of time early degenerative changes are proposed to occur. The aim of our study is to substantiate the connection between hip joint pressure and occurrence of hip osteoarthritis in dysplastic hips. Methods: From 1955 to 1965 112 patients were treated non-operatively for hip dysplasia in developmental dysplasia of the hip in Dept. of Orthopaedic Surgery, Ljubljana. Using mathematical model of the hip, peak joint stress was measured in 27 patients, which met the enrolment criteria consisting of: a.) initial rentgenograph taken at least 20 years ago, b.) closed triradiate cartilage and no rentgenographic signs of osteoarthritis at the time of initial radiograph, c.) no neurological deþcit of lower limbs and no operative procedure during follow up period. All hips were re-examined clinically in year 2000. Results: Mean age at the latest follow up was 47 years (35 years to 61 years). Mean time interval between the rentgenograph from which the hip joint stress was measured and clinical examination was 27 years (20 years to 33 years). Signiþcant correlation was found between peak hip joint stress and Harris hip score (p 0.0013). Discussion and conclusions: Our results indicate that occurrence osteoarthritis of the hip could be related to the degree of hip dysplasia at the end of skeletal growth. The correlation between peak hip joint stress and Harris hip score was one order of magnitude larger than the corresponding correlation between CE angle and Harris hip score, which indicates that hip joint stress represents a valuable parameter describing the status of the hip joint


Bone & Joint Research
Vol. 7, Issue 9 | Pages 541 - 547
1 Sep 2018
Eijkenboom JFA Waarsing JH Oei EHG Bierma-Zeinstra SMA van Middelkoop M

Objectives. It has been hypothesized that patellofemoral pain, a common knee condition in adolescents and young adults, may be a precursor of degenerative joint changes and may ultimately lead to patellofemoral osteoarthritis. Since both conditions share several mechanical disease characteristics, such as altered contact area between the femur and patella and increased joint stress, we investigated whether these conditions share similar and different shape characteristics of the patella compared with normal controls. Methods. This cross-sectional study compared three different study populations: 32 patellofemoral pain subjects (mean age, 32 years (22 to 45); 72% female); 56 isolated radiological patellofemoral osteoarthritis subjects (mean age, 54 years (44 to 58); 89% female); and 80 healthy control subjects (mean age, 52 years (44 to 58); 74% female). Measurements included questionnaires, and lateral and skyline radiographs of the knee. Two separate 30-point 2D statistical shape models of the patella were created from the lateral and skyline radiographs. A general linear model was used to test for differences in standardized shape modes (a specific shape variant of the patella) between patellofemoral osteoarthritis, patellofemoral pain, and controls, using Bonferroni correction and adjustment for body mass index and gender. Results. Five shape modes showed statistically significant differences between groups: skyline modes 1 (p < 0.001), 8 (p = 0.004), and 10 (p < 0.001); and lateral modes 5 (p = 0.002) and 7 (p = 0.002). Skyline mode 8 and lateral mode 5 were similar for patellofemoral osteoarthritis and patellofemoral pain populations, while being statistically significant different from the control group. Conclusion. Our results indicate that patellofemoral pain and patellofemoral osteoarthritis share similar shape characteristics, which are different from control subjects. These findings support the proposed continuum disease model of patellofemoral pain predisposing to the development of patellofemoral osteoarthritis. Cite this article: J. F. A. Eijkenboom, J. H. Waarsing, E. H. G. Oei, S. M. A. Bierma-Zeinstra, M. van Middelkoop. Is patellofemoral pain a precursor to osteoarthritis? Patellofemoral osteoarthritis and patellofemoral pain patients share aberrant patellar shape compared with healthy controls. Bone Joint Res 2018;7:541–547. DOI: 10.1302/2046-3758.79.BJR-2018-0112.R1


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 143 - 143
1 Apr 2019
Hillstrom R Morgan OJ Rozbruch SR Fragomen AT Ranawat A Hillstrom H
Full Access

Introduction. Osteoarthritis (OA), a painful, debilitating joint disease, often caused by excessive joint stress, is a leading cause of disability (World Health Organisation, 2003) and increases with age and obesity. A 5° varus malalignment increases loading in the medial knee compartment from 70% to 90% (Tetsworth and Paley, 1994). Internal unloading implants, placed subcutaneously upon the medial aspect of the knee joint, are designed to offload the medial compartment of the knee without violating natural joint tissues. The aim of this study is to investigate the effect of an unloading implant, such as the Atlas™ knee system, on stress within the tibiofemoral joint with different grades of cartilage defects. Methods. To simulate surgical treatment of medial knee OA, a three-dimensional computer-aided design of an Atlas™ knee system was virtually fixed to the medial aspect of a validated finite element knee model (Mootanah, 2014), using CATIA v5 software (Dassault Systèmes, Velizy Villacoublay, France). The construct was meshed and assigned material properties and boundary conditions, using Abaqus finite element software (Dassault Systèmes, Velizy Villacoublay, France). A cartilage defect was simulated by removing elements corresponding to 4.7 mm. 2. The international cartilage repair society (ICRS) Grade II and III damage were simulated by normalized defect depth of 33% and 67%, respectively. The femur was mechanically grounded and the tibia was subjected to loading conditions corresponding to the stance phase of walking of a healthy 50-year-old 68-Kg male with anthropometrics that matched those of the cadaver. Finite element analyses were run for peak shear and von Mises stress in the medial and lateral tibiofemoral compartments. Results. Von Mises stress distribution in the tibial cartilage, with ICRS Grade II and III defects, without the unloading implant, at the end of weight acceptance (15% of the gait cycle) were analysed. The internal unloading implant reduces peak von Mises stress by 40% and 43% for Grade II and Grade III cartilage defects, respectively. The corresponding reductions in shear stress are 36% and 40%. Consistent reduction in peak von Mises stress values in the medial cartilage-cartilage and cartilage-meniscus contact areas were predicted throughout the stance phase of the gait cycle for ICRS Grade II defect. Similar results were obtained for Grade III defect and for peak shear stress values. There were no overall increases in peak von Mises stress values in the lateral tibial cartilage. Discussion and Conclusions. The internal unloading implant is capable of reducing von Mises and shear stress values in the medial tibial cartilage with ICRS Grade II and III defects at the cartilage-cartilage and cartilage-meniscus interfaces throughout the stance phase of the gait cycle. This did not result in increased stress values in the lateral tibial cartilage. Our model did not account for the viscoelastic effects of the cartilage and meniscus. Results of this study are based on only one knee specimen. The internal unloading implant may protect the cartilage in individuals with medial knee osteoarthritis, thereby delaying the need for knee replacements


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 26 - 26
1 Dec 2017
Pedersen D Vanheule V Wirix-Speetjens R Taylan O Delport HP Scheys L Andersen MS
Full Access

Joint laxity assessments have been a valuable resource in order to understand the biomechanics and pathologies of the knee. Clinical laxity tests like the Lachman test, Pivot-shift test and Drawer test are, however, subjective of nature and will often only provide basic information of the joint. Stress radiography is another option for assessing knee laxity; however, this method is also limited in terms of quantifiability and one-dimensionality. This study proposes a novel non-invasive low-dose radiation method to accurately measure knee joint laxity in 3D. A method that combines a force controlled parallel manipulator device, a medical image and a biplanar x-ray system. As proof-of-concept, a cadaveric knee was CT scanned and subsequently mounted at 30 degrees of flexion in the device and placed inside a biplanar x-ray scanner. Biplanar x-rays were obtained for eleven static load cases. The preliminary results from this study display that the device is capable of measuring primary knee laxity kinematics similar to what have been reported in previous studies. Additionally, the results also display that the method is capable of capturing coupled motions like internal/external rotation when anteroposterior loads are applied. We have displayed that the presented method is capable of obtaining knee joint laxity in 3D. The method is combining concepts from robotic arthrometry and stress radiography into one unified solution that potentially enables unprecedented 3D joint laxity measurements non-invasively. The method potentially eliminates limitations present in previous methods and significantly reduces the radiation exposure of the patient compared to conventional stress radiography


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 54 - 54
1 May 2016
Carpanen D Hillstrom H Walker R Reisse F Cheah K Mootanah R
Full Access

Introduction. Partial meniscectomy, a surgical treatment for meniscal lesions, allows athletes to return to sporting activities within two weeks. However, this increases knee joint shear stress, which is reported to cause osteoarthritis. The volumes and locations of partial meniscectomy that would result in a substantial increase in knee joint stress is not known. This information could inform surgeons when a meniscus reconstruction is required. Aim. Our aim was to use a previously validated knee finite element (FE) model to predict the effects of different volumes and locations of partial meniscectomy on cartilage shear stress. The functional point of interest was at the end of weight acceptance in walking and running, when the knee is subjected to maximum loading. Method. An FE model of the knee joint was used to simulate walking and running, two of the most common functional activities. Forces and moments, obtained from the gait cycle of a 76.4 kg male subject, were applied at the tibia. Different sizes (0%, 10%, 30%, 60%) and locations (anterior, medial and posterior) of partial meniscectomies were simulated (Figure 1). Maximum cartilage shear stress was determined for the different meniscectomies. Graphs were plotted of the cumulative tibial cartilage volume subjected to stress values above specific thresholds. Results and analysis. Maximum shear stress values for the intact knee during walking were 2.00 MPa medially and 1.71 MPa laterally. During running these magnitudes rose to 3.48 MPa medially and 4.70 MPa laterally. For a 30% anterior, central and posterior meniscectomy during walking shear stress increased by 25.9%, 44.9% and 32.5% medially, and 12.4%, 25.7% and 17.8% laterally. During running shear stress increased by 9.6%, 8.3% and 7.1%, medially and 31.6%, 37.5% and 43.6% laterally. For a 60% meniscectomy, during walking shear stress increased by 47.2% medially and 31.8%, laterally. During running shear stress increased by 10.0%, medially and 51.8%, laterally. The percentage of cartilage volume exposed to shear stress levels above a specified threshold is illustrated in Figure 2 for different volumes and locations of partial meniscectomy. Discussion and conclusions. This is first study that has estimated the volume of cartilage exposed to specific stress thresholds in walking and running as a function of the amount and location of meniscectomy. Maximum shear stress was 100% higher at the end of weight acceptance in running compared to walking. Stress was higher in the lateral compartment during running while higher in the medial compartment during walking. This is because a valgus moment acts at the knee at the end of weight acceptance in running while a varus moment acts at the joint in walking. Clinical significance. The model developed from this research has potential for applications in planning meniscal surgeries and developing rehabilitation strategies for athletes. It could inform surgeons about the safe volume and location of partial meniscectomy that can be performed before meniscus reconstruction becomes necessary. Results of this study also highlight the importance of considering the effect of post-surgical outcomes following different common functional activities


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 113 - 113
1 Apr 2005
Cazal J Tourné Y Saragaglia D
Full Access

Purpose: Chronic ankle instability is generally related to lateral laxity of the tibiotalar joint. Stress x-rays may however be negative. Varus of the hindfoot is another possibility. In such cases, it would be logical to propose Dwyer valgus osteotomy of the calcaneum. The objective of this work was to review patients who underwent Dwyer osteotomy from 1992 to 2000. Material and methods: The series included fifteen patients, nine men and six women, who complained of chronic ankle instability with no evidence of laxity. All presented a varus hindfoot (mean 5°, range 3–10°). Thirteen patients practiced sports, including eight at the competition level. Sixty percent had experienced instability accidents during sports activities. Associated lesions were fissures of the fibular tendons (n=2), osteochondral lesion of the talar dome (n=1), Haglund disease (n=1) and stage II pes cavus (n=2). Lateral closed Dwyer osteotomy was performed in all cases, generally with fixed with two screws in a 2-hole 1/3 plate. Associated procedures were: lateral ligamentoplasty (n=1), osteotomy to raise M1 (n=2), regularisation of an osteochondral lesion of the talar dome (n=1), Zadek osteotomy (n=1) and anterior arthrolysis (n=1). The same surgeon reviewed the patients clinically and radiologically, independent of the operator. Results: Mean follow-up was 3.5 years (range 1–9, SD 2.5). There were no complications except one case of cutaneous necrosis in the patient who had simultaneous osteotomy and ligamentoplasty. Instability resolved in all patients. Ten patients experienced minor episodic pain (50% during sports activities). Eleven patients (70%) resumed their sports activities within eight months (3–36) and 33% at their former level. The mean Kitaoka score was 92 (85–100) and 80% of the patients were satisfied or very satisfied. Conclusion: Dwyer osteotomy provides quite satisfactory results for patients with chronic ankle instability without evidence of laxity and hindfoot varus. When a complementary ligamentoplasty appears to be necessary, it is preferable to wait for a second operation in order to avoid the risk of cutaneous necrosis


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 113 - 114
1 Apr 2005
Groge F Curvale G Rochweger A Pinelli P
Full Access

Purpose: Osteonecrosis of the metatarsal heads is a source of metatarsalgia usually triggered by local overload. The Gauthier technique, described in 1974 consists in a dorsal flexion osteotomy with cuneiform resection of the necrotic zone. Results reported in the literature have generally been limited to mid-term. We evaluated the long-term outcome. Material and methods: We conducted a clinical and radiological review of a small homogeneous series of ten patients (nine women and one man) who presented metatarsal head necrosis (generally the third metatarsal) causing mechanical pain. In one patient, the phalangeal surface was degenerative. Eight patients had associated asymptomatic hallux valgus which was left intact. Mean follow-up was 9.5 years (27 months – 19 years). Results: The metatarsophalangeal joint was pain free in all patients. Mean plantar flexion was 25°, extension was free with no particular limitation. Radiographically, there was no evidence of recurrent osteochondritis nor long-term degeneration. The height of the joint space (measured by comparison with the length of the lateral sesamoid) displayed a gain in all patients postoperatively. Discussion: The Gauthier intervention has regularly provided good short- and mid-term results with restitution of a good-quality metatarsophalangeal space. There is generally however a marked limitation of dorsal flexion. This small series with long-term follow-up demonstrates that dorsal flexion tends to normalise over time and that recurrent necrosis or osteoarthritic degeneration is not a problem. This result can be explained by the reduction of joint stress due to the shorter anteroposterior effect and the elevation of the metatarsal head. Although our one case of overall joint degeneration did not worsen, this technique is probably of limited value for advanced-stage osteonecrosis since it cannot reconstitute a healthy phalangeal cartilage damaged before the operation. Surgical correction of associated deformities of the first ray should be discussed: among the eight cases of asymptomatic hallux valgus preoperatively, three remained symptom free, five worsened, and two were treated surgically. Conclusion: The regularly satisfactory early results of the Gauthier osteotomy performed for osteonecrosis of the metatarsal head persist in the long term and improve with time in terms of joint motion, making this method a choice technique


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 4 - 4
1 Jan 2016
Yang X Chen W Yu S Zhang Y Luo G Wang H Sheng P
Full Access

Objective. To investigate the biomechanical basis and report preliminary clinical efficacy of eccentric rotational acetabular osteotomy (ERAO) when treating developmental dysplasia of the hip (DDH). Methods. Biomechanical model of the hip joint was established on cadaveric hips. After performed ERAO on the biomechanical model, we explored the impact of this surgery on biomechanics of the hip joint. Meanwhile, we reported postoperative follow-up cases who underwent ERAO in our hospital between November 2007 to July 2012. A total of 14 patients (15 hips) were reported, including 4 males and 10 females, mean age was 30 years old. Harris hip score was defined as clinical evaluation standard and radiographic assessment was based on the measurement and further comparison of pre- and post-operative AHI (Acetabular-head index), CE angle (Center-edge angle) and Sharp angle. Results. The established biomechanical model was accord with the physiological state of normal hip joint. Postoperative stress was not statistically significant compared with the preoperative stress. Meanwhile, by the end of follow-up, 13 patients (14 hips) were followed for an average time of 26 months, thus, the follow-up rate was 92.9%. Harris hip score improved from preoperative (67.1 ± 8.7) points to (88.1 ± 7.3) points; postoperative AHI increased an average of 39.6%, CE angle increased an average of 33.2 ° and sharp angle reduced an average of 9.6 °. Conclusions. Both biomechanical study and preliminary clinical observation show that ERAO has the ability to correct the deformity of acetabulum. It enlarges the acetabular coverage of the femoral head and thus corrects the abnormal stress pattern. No bone graft is needed during the operation and postoperative rehabilitation is short, therefore, ERAO may have good curative effect when treating the DDH


Bone & Joint Research
Vol. 8, Issue 2 | Pages 101 - 106
1 Feb 2019
Filardo G Petretta M Cavallo C Roseti L Durante S Albisinni U Grigolo B

Objectives

Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology.

Methods

A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability.


Bone & Joint 360
Vol. 1, Issue 1 | Pages 15 - 16
1 Feb 2012