Advertisement for orthosearch.org.uk
Results 1 - 20 of 152
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 12 - 12
1 Nov 2021
Anjum S Jamieson S Deehan D Kirby J Tyson-Capper A
Full Access

Introduction and Objective. Total joint replacement is indicated for osteoarthritis where conservative treatment has failed, and in the UK the number of patients requiring hip and knee replacements is set to increase with an ageing population. Survival of total hip replacements is around 85% at 20 years with the most common reason for revision being aseptic loosening of the implant secondary to osteolysis, which is caused by immune-mediated reactions to implant debris. These debris can also cause pseudotumour formation. As revision surgery is associated with higher morbidity, mortality, infection rates, venous thromboembolism, resource demand and poorer subsequent function it is important to understand the mechanisms underlying the pro-inflammatory process to improve implant survival. Toll-like receptor 4 (TLR4), an innate immune receptor, has been demonstrated to mediate deleterious immune responses by the Tyson-Capper research group, including inflammatory cytokine interleukin-8 (IL-8) secretion. Statin use in epidemiological studies has been associated with reduced overall risk of revision surgery after hip replacement. In-vitro studies have demonstrated the potential for statins to reduce orthopaedic debris-induced immune responses which can lead to osteolysis and pseudotumour formation. As literature from cardiological investigations demonstrate that statins can reduce the expression and responsiveness of TLR4, this could be an exciting mechanism to exploit to reduce the host immune response to orthopaedic wear debris, thereby improving implant survival by reducing immune mediated osteolysis. This ongoing study investigates simvastatin's effect on cobalt ion-mediated changes in gene and protein expression of interleukin-8 and soluble-ICAM-1 (sICAM-1) which is an angiogenic factor implicated in pseudotumour formation. Materials and Methods. TLR4-expressing human monocyte/macrophage THP-1 cells were pre-incubated with 50μM simvastatin for 2-hours or a vehicle control, before being exposed to exposed to 0.75mM cobalt chloride, in addition to a further 24-hour co-incubation with 50μM simvastatin or vehicle control. IL-8 protein and sICAM-1 secretion was measured by enzyme-linked immunosorbent assay (ELISA). Gene expression changes were quantified by TaqMan-based real time polymerase chain reaction. Results. Pre-treatment with simvastatin significantly reduced cobalt-mediated IL-8 protein secretion (n=3) and sICAM-1 protein secretion (n=2) in THP-1 cells (p-value<0.0001). Work will be undertaken to determine changes in gene expression, the role of TLR4 in these responses and the effect of simvastatin on additional inflammatory markers. Conclusions. Simvastatin significantly reduces cobalt-ion mediated IL-8 and sICAM-1 protein secretion in THP-1 cells. This in-vitro finding demonstrates the potential for simvastatin to reduce recruitment of leukocytes which mediate the deleterious inflammatory processes driving aseptic loosening and pseudotumour formation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 70 - 70
1 May 2017
Anjum S Mawdesley A Lawrence H Deehan D Kirby J Tyson-Capper A
Full Access

Background. Adverse reactions to metal debris are implicated in the failure of metal-on-metal hip arthroplasty. The peri-implant tissues are often infiltrated by leukocytes which may cause observed immunological effects, including soft tissue necrosis and osteolysis. Cobalt ions from orthopaedic implants aberrantly activate the innate immune receptor human toll-like receptor-4 (TLR4), leading to inflammatory cytokine release including interleukin-8 (IL-8). IL-8 has been shown to increase expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). These factors are essential for leukocyte adhesion to endothelium, which is required for leukocyte migration into tissues. This study investigates cobalt's effect on gene and protein changes in IL-8, ICAM-1 and VCAM-1 to determine their potential role in immune cell infiltration of peri-implant tissues. Methods. TLR4-expressing human dermal microvascular endothelial cells (HMEC-1) were treated with a range of clinically relevant cobalt ion concentrations. IL-8 protein secretion was measured by enzyme-linked immunosorbent assay (ELISA). Gene expression changes were quantified by TaqMan-based real time polymerase chain reaction. Results. Stimulation with cobalt ions significantly increases IL-8 secretion (n=3) in HMEC-1 cells. This is a TLR4-specific effect as a small molecule TLR4 antagonist inhibited cobalt-induced IL-8 secretion. Following cobalt treatment (0.75mM cobalt chloride) there is a 12-fold increase in ICAM-1 (p-value=0.0004) and a 6-fold increase in VCAM-1 (p-value<0.0001) gene expression. Work will be undertaken to determine the role of TLR4 in these responses. Conclusion. Cobalt increases IL-8 secretion and adhesion molecule gene expression in HMEC-1 cells. This in vitro finding demonstrates the potential for cobalt ions to increase leukocyte adhesion to the endothelial surface. This may contribute to leukocyte infiltration of peri-implant tissues in metal-on-metal hip arthroplasty failure


Bone & Joint Research
Vol. 11, Issue 2 | Pages 73 - 81
22 Feb 2022
Gao T Lin J Wei H Bao B Zhu H Zheng X

Aims. Trained immunity confers non-specific protection against various types of infectious diseases, including bone and joint infection. Platelets are active participants in the immune response to pathogens and foreign substances, but their role in trained immunity remains elusive. Methods. We first trained the innate immune system of C57BL/6 mice via intravenous injection of two toll-like receptor agonists (zymosan and lipopolysaccharide). Two, four, and eight weeks later, we isolated platelets from immunity-trained and control mice, and then assessed whether immunity training altered platelet releasate. To better understand the role of immunity-trained platelets in bone and joint infection development, we transfused platelets from immunity-trained mice into naïve mice, and then challenged the recipient mice with Staphylococcus aureus or Escherichia coli. Results. After immunity training, the levels of pro-inflammatory cytokines (tumour necrosis factor alpha (TNF-α), interleukin (IL)-17A) and chemokines (CCL5, CXCL4, CXCL5, CXCL7, CXCL12) increased significantly in platelet releasate, while the levels of anti-inflammatory cytokines (IL-4, IL-13) decreased. Other platelet-secreted factors (e.g. platelet-derived growth factor (PDGF)-AA, PDGF-AB, PDGF-BB, cathepsin D, serotonin, and histamine) were statistically indistinguishable between the two groups. Transfusion of platelets from trained mice into naïve mice reduced infection risk and bacterial burden after local or systemic challenge with either S. aureus or E. coli. Conclusion. Immunity training altered platelet releasate by increasing the levels of inflammatory cytokines/chemokines and decreasing the levels of anti-inflammatory cytokines. Transfusion of platelets from immunity-trained mice conferred protection against bone and joint infection, suggesting that alteration of platelet releasate might be an important mechanism underlying trained immunity and may have clinical implications. Cite this article: Bone Joint Res 2022;11(2):73–81


Aims

This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously.

Methods

Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 601 - 614
21 Sep 2023
Gu P Pu B Liu T Yue D Xin Q Li H Yang B Ke D Zheng X Zeng Z Zhang Z

Aims

Mendelian randomization (MR) is considered to overcome the bias of observational studies, but there is no current meta-analysis of MR studies on rheumatoid arthritis (RA). The purpose of this study was to summarize the relationship between potential pathogenic factors and RA risk based on existing MR studies.

Methods

PubMed, Web of Science, and Embase were searched for MR studies on influencing factors in relation to RA up to October 2022. Meta-analyses of MR studies assessing correlations between various potential pathogenic factors and RA were conducted. Random-effect and fixed-effect models were used to synthesize the odds ratios of various pathogenic factors and RA. The quality of the study was assessed using the Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization (STROBE-MR) guidelines.


Bone & Joint Research
Vol. 11, Issue 1 | Pages 29 - 31
20 Jan 2022
Ma M Tan Z Li W Zhang H Liu Y Yue C


Bone & Joint Research
Vol. 11, Issue 1 | Pages 26 - 28
20 Jan 2022
Ma M Tan Z Li W Zhang H Liu Y Yue C


Bone & Joint Research
Vol. 12, Issue 2 | Pages 133 - 137
10 Feb 2023
Liao H Tsai C

Aims

To investigate the correlations among cytokines and regulatory T cells (T-regs) in ankylosing spondylitis (AS) patients, and their changes after anti-tumour necrosis factor-α (TNF-α) treatment.

Methods

We included 72 AS patients with detailed medical records, disease activity score (Bath Ankylosing Spondylitis Disease Activity Index), functional index (Bath Ankylosing Spondylitis Functional Index), and laboratory data (interleukin (IL)-2, IL-4, IL-10, TNF-α, interferon (IFN)-γ, transforming growth factor (TGF)-β, ESR, and CRP). Their peripheral blood mononuclear cells (PBMCs) were marked with anti-CD4, anti-CD25, and anti-FoxP3 antibodies, and triple positive T cells were gated by flow cytometry as T-regs. Their correlations were calculated and the changes after anti-TNF-α therapy were compared.


Bone & Joint Research
Vol. 6, Issue 12 | Pages 649 - 655
1 Dec 2017
Liu Y Zhu H Hong H Wang W Liu F

Objectives. Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co. 2+. ) during wear of MOM hip implants, but the toxic mechanism is not clear. Methods. To evaluate the protective effect of zinc ions (Zn. 2+. ), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn. 2+. for four hours. The cells were then exposed to different concentrations of CoNPs and Co. 2+. for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured. Results. CoNPs and Co. 2+. can induce the increase of ROS and inflammatory cytokines, such as tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). However, Zn pretreatment can significantly prevent cytotoxicity induced by CoNPs and Co. 2+. , decrease ROS production, and decrease levels of inflammatory cytokines in Balb/3T3 mouse fibroblast cells. Conclusion. These results suggest that Zn pretreatment can provide protection against inflammation and cytotoxicity induced by CoNPs and Co. 2+. in Balb/3T3 cells. Cite this article: Y. Liu, H. Zhu, H. Hong, W. Wang, F. Liu. Can zinc protect cells from the cytotoxic effects of cobalt ions and nanoparticles derived from metal-on-metal joint arthroplasties? Bone Joint Res 2017;6:649–655. DOI: 10.1302/2046-3758.612.BJR-2016-0137.R2


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 127 - 127
2 Jan 2024
Strangmark E Wang J Hosni RA Muhammad H Alkhrayef M Robertson-Waters E MacMillan A Gompels B Vogt A Khan W Birch M McCaskie A
Full Access

Cell culture on tissue culture plastic (TCP) is widely used across biomedical research to understand the in vivo environment of a targeted biological system. However, growing evidence indicates that the characteristics of cells investigated in this way differ substantially from their characteristics in the human body. The limitations of TCP monolayer cell cultures are especially relevant for chondrocytes, the cell population responsible for producing cartilage matrix, because their zonal organization in hyaline cartilage is not preserved in a flattened monolayer assay. Here, we contrast the response of primary human chondrocytes to inflammatory cytokines, tumor necrosis factor-alpha and interferon-gamma, via transcriptional, translational, and histological profiling, when grown either on TCP or within a 3D cell pellet (scaffold-less). We focus on anti-apoptotic (Bcl2), pro-apoptotic (Bax, Mff, Fis1), and senescent (MMP13, MMP1, PCNA, p16, p21) markers. We find that the 3D environment of the chondrocyte has a profound effect on the behavior and fate of the cell; in TCP monolayer cultures, chondrocytes become anti-apoptotic and undergo senescence in response to inflammatory cytokines, whereas in 3D cell pellet cultures, they exhibit a pro-apoptotic response. Our findings demonstrate that chondrocyte culture environment plays a pivotal role in cell behavior, which has important implications for the clinical applicability of in vitro research of cartilage repair. Although there are practical advantages to 2D cell cultures, our data suggest researchers should be cautious when drawing conclusions if they intend to extrapolate findings to in vivo phenomena. Our data demonstrates opposing chondrocyte responses in relation to apoptosis and senescence, which appear to be solely reliant on the environment of the culture system. This biological observation highlights that proper experimental design is crucial to increase the clinical utility of cartilage repair experiments and streamline their translation to therapy development


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 57 - 57
17 Nov 2023
Strangmark E Wang JH Hosni RA Muhammad H Alkhrayef M Robertson-Waters E MacMillan A Gompels B Vogt A Khan W Birch M McCaskie A
Full Access

Abstract. BACKGROUND. Cell culture on tissue culture plastic (TCP) is widely used across biomedical research to understand the in vivo environment of a targeted biological system. However, growing evidence indicates that the characteristics of cells investigated in this way differ substantially from their characteristics in the human body. The limitations of TCP monolayer cell cultures are especially relevant for chondrocytes, the cell population responsible for producing cartilage matrix, because their zonal organization in hyaline cartilage is not preserved in a flattened monolayer assay. OBJECTIVE. Here, we contrast the response of primary human chondrocytes to inflammatory cytokines, tumor necrosis factor-alpha and interferon-gamma, via transcriptional, translational, and histological profiling, when grown either on TCP or within a 3D cell pellet (scaffold-less). We focus on anti-apoptotic (Bcl2), pro-apoptotic (Bax, Mff, Fis1), and senescent (MMP13, MMP1, PCNA, p16, p21) markers. RESULTS. We find that the 3D environment of the chondrocyte has a profound effect on the behavior and fate of the cell; in TCP monolayer cultures, chondrocytes become anti-apoptotic and undergo senescence in response to inflammatory cytokines, whereas in 3D cell pellet cultures, they exhibit a pro-apoptotic response. CONCLUSION. Our findings demonstrate that chondrocyte culture environment plays a pivotal role in cell behavior, which has important implications for the clinical applicability of in vitro research of cartilage repair. Although there are practical advantages to 2D cell cultures, our data suggest researchers should be cautious when drawing conclusions if they intend to extrapolate findings to in vivo phenomena. Our data demonstrates opposing chondrocyte responses in relation to apoptosis and senescence, which appear to be solely reliant on the environment of the culture system. This biological observation highlights that proper experimental design is crucial to increase the clinical utility of cartilage repair experiments and streamline their translation to therapy development. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint Research
Vol. 9, Issue 10 | Pages 731 - 741
28 Oct 2020
He Z Nie P Lu J Ling Y Guo J Zhang B Hu J Liao J Gu J Dai B Feng Z

Aims. Osteoarthritis (OA) is a disabling joint disorder and mechanical loading is an important pathogenesis. This study aims to investigate the benefits of less mechanical loading created by intermittent tail suspension for knee OA. Methods. A post-traumatic OA model was established in 20 rats (12 weeks old, male). Ten rats were treated with less mechanical loading through intermittent tail suspension, while another ten rats were treated with normal mechanical loading. Cartilage damage was determined by gross appearance, Safranin O/Fast Green staining, and immunohistochemistry examinations. Subchondral bone changes were analyzed by micro-CT and tartrate-resistant acid phosphatase (TRAP) staining, and serum inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA). Results. Our radiographs showed that joint space was significantly enlarged in rats with less mechanical loading. Moreover, cartilage destruction was attenuated in the less mechanical loading group with lower histological damage scores, and lower expression of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5, matrix metalloproteinase (MMP)-3, and MMP-13. In addition, subchondral bone abnormal changes were ameliorated in OA rats with less mechanical loading, as reduced bone mineral density (BMD), bone volume/tissue volume (BV/TV), and number of osteophytes and osteoclasts in the subchondral bone were observed. Finally, the level of serum inflammatory cytokines was significantly downregulated in the less mechanical loading group compared with the normal mechanical loading group, as well as the expression of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), caspase-1, and interleukin 1β (IL-1β) in the cartilage. Conclusion. Less mechanical loading alleviates cartilage destruction, subchondral bone changes, and secondary inflammation in OA joints. This study provides fundamental insights into the benefit of non-weight loading rest for patients with OA. Cite this article: Bone Joint Res 2020;9(10):731–741


Bone & Joint Research
Vol. 10, Issue 4 | Pages 285 - 297
1 Apr 2021
Ji M Ryu HJ Hong JH

Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA. Cite this article: Bone Joint Res 2021;10(4):285–297


Bone & Joint Research
Vol. 10, Issue 7 | Pages 401 - 410
13 Jul 2021
Liu Z Wang H Wang S Gao J Niu L

Aims. Poly (ADP-ribose) polymerase (PARP) inhibitor has been reported to attenuate inflammatory response in rat models of inflammation. This study was designed to investigate the effect of PARP signalling in osteoarthritis (OA) cartilage inflammatory response in an OA rat model. Methods. The OA model was established by anterior cruciate ligament transection with medial meniscectomy in Wistar rats. The poly (ADP-ribose) polymerase 1 (PARP-1) shRNA (short hairpin (sh)-PARP-1) and negative control shRNA (sh-NC) were delivered using a lentiviral vector and were intra-articularly injected into rats after surgery. The weight-bearing distribution of the hind limbs and the knee joint width were measured every two weeks. The expression levels of PARP-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in cartilage were determined using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. The serum concentrations of inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA). Results. PARP-1 expression level significantly increased in the cartilage of the established OA rat model. sh-PARP-1 treatment suppressed PARP-1 levels, decreased the Δ Force (the difference between the weight on ipsilateral limb and contralateral limb) and the knee joint width, inhibited cartilage matrix catabolic enzymes, and ameliorated OA cartilage degradation and attenuated inflammatory response. Conclusion. PARP-1 inhibition attenuates OA cartilage inflammatory response in the OA rat model. Cite this article: Bone Joint Res 2021;10(7):401–410


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 41 - 41
1 Jan 2017
Minkwitz S Klatte-Schulz F Schmock A Stolk M Seifert M Scheibel M Wildemann B
Full Access

Tendon injuries are associated with the formation of inferior, disorganized scar tissue at the tendon bone insertion site and high failure rates. Two major processes are discussed being key players: the inflammatory reaction upon tear and the remodeling process of the tendon. In a previous study we demonstrated that the profile of MMPs and TIMPs, being key factors of tendon modeling and remodeling, is altered in tenocytes of rotator cuff tears from donors with higher age (>65 years) and degenerative status (high degree of muscle fatty infiltration)[1]. But do these cells also show different expression of inflammatory cytokines or react different upon cytokine stimulation? The aim of our project was to analyze the expression of inflammatory cytokines in human tenocyte-like cells (hTLCs) on mRNA-level and the responsiveness to cytokine stimulation regarding differences between varying donor characteristics such as age, sex and the degenerative status of the tendon. TLCs were isolated from SSP tendon biopsies from 16 male and 14 female donors undergoing arthroscopic or open shoulder surgery. Cells from each donor (passage 1 or 2) were seeded in a 6-well plate and RNA was isolated after 7 days of culture. Quantitative Real-Time PCR was performed to analyze the expression of IL-6, IL-1β, TNF-α, IL-10, IL-33, TGF-β1 and COX-2. Furthermore, hTLCs of 12 male donors were stimulated for 3 days with a combination of TNF-α and IFN-γ (10ng/ml). The effect of the cytokines was analyzed by flow cytometry regarding surface marker expression: ICAM (CD54), VCAM (CD106), and Major Histocompatibility Complex (MHC)-class I and MHC-class II. Statistics: Mann-Whitney-U-Test, Spearman´s-Rho-correlation, p≤0.05. Gene expression analysis revealed high levels of IL-6, TGF-β1 and COX-2 in hTLCs but low expression of TNF-α and IL-10. No differences in the expression of the inflammatory cytokines were found between low and high fatty infiltration or with respect to age. The stimulation of the hTLCs with TNF-α and IFN-γ increased the number of ICAM and VCAM positive cells up to 100% and 97±5%, respectively. MHC-class II was not expressed on unstimulated cells but 77±17% MHC-class II positive cells were present after stimulation. All unstimulated cells were positive for MHC-class I, but the MFI (Mean Fluorescent Intensity) increased after stimulation. No significant difference in the expression of surface markers was detected when comparing tenocytes of donors with low and high muscle fatty infiltration. In contrast to the significant changes in expression levels of MMPs and TIMPs in tenocytes of donors with different age and degenerative status[1], we could not detect any significant changes in the expression of inflammatory cytokines or in the responsiveness of these tenocytes upon cytokine stimulation. All tenocytes showed the potential to respond to inflammatory processes. This indicates that the response of the tenocytes to inflammatory stimuli seems to be independent of donor characteristics, whereas the tendon remodeling might depend on age and degenerative status of the donor


Bone & Joint Research
Vol. 12, Issue 4 | Pages 274 - 284
11 Apr 2023
Du X Jiang Z Fang G Liu R Wen X Wu Y Hu S Zhang Z

Aims. This study aimed to investigate the role and mechanism of meniscal cell lysate (MCL) in fibroblast-like synoviocytes (FLSs) and osteoarthritis (OA). Methods. Meniscus and synovial tissue were collected from 14 patients with and without OA. MCL and FLS proteins were extracted and analyzed by liquid chromatography‒mass spectrometry (LC‒MS). The roles of MCL and adenine nucleotide translocase 3 (ANT3) in FLSs were examined by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunofluorescence, and transmission electron microscopy. Histological analysis was performed to determine ANT3 expression levels in a male mouse model. Results. We discovered for the first time that MCL was substantially enriched in the synovial fluid of OA patients and promoted the release of inflammatory cytokines from FLSs through MCL phagocytosis. Through LC‒MS, ANT3 was identified and determined to be significantly upregulated in MCL and OA-FLSs, corresponding to impaired mitochondrial function and cell viability in OA-FLSs. Mitochondrial homeostasis was restored by ANT3 suppression, thereby alleviating synovial inflammation. Furthermore, elevated ANT3 levels inhibited ERK phosphorylation. Specifically, silencing ANT3 prevented inhibition of ERK phosphorylation and significantly reduced the elevation of reactive oxygen species (ROS) and JC1 membrane potential in MCL-induced synovial inflammation. Conclusion. This study revealed the important roles of MCL and ANT3 in FLS mitochondria. Silencing ANT3 rescued ERK phosphorylation, thereby restoring mitochondrial homeostasis in FLSs and alleviating synovitis and OA development, offering a potential target for treating synovitis and preventing early-stage OA. Cite this article: Bone Joint Res 2023;12(4):274–284


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 207 - 207
1 Mar 2010
Kabbabe B Richardson M Ramkumar S Lowe A Beckman K Allan P Thallas V Hamilton J Cook A Nazaretian S
Full Access

Frozen Shoulder (FS) is a debilitating musculoskeletal condition with an uncertain aetiology and poorly understood pathogenic mechanism. This study aimed to investigate the pathology of FS. We hypothesised that an altered expression of cytokines may disrupt the normal tissue remodeling process, leading to FS, which would be apparent histologically. Patients undergoing arthroscopic treatment of FS were prospectively recruited, along with control patients being treated for subacromial impingement. Synovial biopsies were taken from all subjects. Synovial RNA levels were analysed using quantitative Polymerase Chain Reaction (qPCR). Inflammatory cytokines and growth factors thought to play a role in the pathogenesis of FS were assessed. These included metalloproteases (MMP, ADAMTS) involved in tissue remodeling and fibrosis, inflammatory cytokines such as interleukins (IL), and growth factors such as colony stimulating factors (MCSF, GMCSF, CSF1R). Samples underwent histological analysis, to assess inflammation and fibrosis. Thirteen patients with FS and ten control patients with subacromial impingement were recruited. Arthroscopic inspection revealed greater levels of synovitis (2.63+ vs 0.40+, p< 0.01) and papillary proliferation (50% vs 10%, p=0.02) in FS patients compared with the control group, confirming the initial clinical diagnosis of FS. Histological analysis of the synovium revealed samples from the FS group were more likely to demonstrate a fibrotic, focally nodular collagen morphology (53.8% vs 10%, p=0.03). There were similar levels of chronic inflammatory cells present in those with FS and control patients (53.8% vs 30%, p=0.25). There was no evidence of acute inflammation in any of the samples. Immunohistochemical staining revealed a high level of AGEs present in the synovium and smooth muscle tissue in all samples. There was no observed difference between diabetic and non-diabetic samples. Cytogenetic analysis using qPCR revealed fibrogenic factors MMP3 (p=0.068), and ADAMTS4 (p=0.083) to be elevated in FS cases, as were inflammatory cytokines IL6 (p=0.062) and IL8 (p=0.075). We have quantified the level of inflammatory cytokines and growth factors in FS, demonstrating that these factors are elevated in FS. This indicates that altered levels of inflammatory cytokines may be associated with the pathogenesis of inflammation evolving into fibrosis, the characteristic feature of FS. We have also shown the histology of this fibrosis to be different to that observed in normal synovium


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 91 - 91
2 Jan 2024
Graça A Rodrigues M Domingues R Gomes M Gomez-Florit M
Full Access

Macrophages play a critical role in innate immunity by promoting or inhibiting tissue inflammation and repair. Classically, macrophages can differentiate into either pro-inflammatory (M1) or pro-reparative (M2) phenotypes in response to various stimuli. Therefore, this study aimed to address how extracellular vesicles (EVs) derived from polarized macrophages can affect the inflammatory response of tendon cells. For that purpose, human THP-1 cells were stimulated with lipopolysaccharide (LPS), and interleukins -4 and -13 (IL- 4, IL-13), to induce macrophages polarization into M1, M2, and hybrid M1/M2 phenotypes. Subsequently, the EVs were isolated from the culture medium by ultracentrifugation. The impact of these nanovesicles on the inflammation and injury scenarios of human tendon-derived cells (hTDCs), which had previously been stimulated with interleukin- 1 beta (IL-1ß) to mimic an inflammatory scenario, was assessed. We were able to isolate three different nanovesicles populations, showing the typical shape, size and surface markers of EVs. By extensively analyzing the proteomic expression profiles of M1, M2, and M1/M2, distinct proteins that were upregulated in each type of macrophage-derived EVs were identified. Notably, most of the detected pro- inflammatory cytokines and chemokines had higher expression levels in M1-derived EVs and were mostly absent in M2-derived EVs. Hence, by acting as a biological cue, we observed that M2 macrophage-derived EVs increased the expression of the tendon-related marker tenomodulin (TNMD) and tended to reduce the presence of pro-inflammatory markers in hTDCs. Overall, these preliminary results show that EVs derived from polarized macrophages might be a potential tool to modulate the immune system responses becoming a valuable asset in the tendon repair and regeneration fields worthy to be further explored


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 76 - 76
2 Jan 2024
Awad H
Full Access

Vascular inflammation and activation of myofibroblasts are significant contributors to the progression of fibrosis, which can severely impair tissue function. In various tissues, including tendons, Transforming growth factor beta 1 (TGF-β1) has been identified as a critical driver of adhesion and scar formation. Nevertheless, the mechanisms that underlie fibrotic peritendinous adhesions are still not well comprehended, and human microphysiological systems to help identify effective therapies remain scarce. To address this issue, we developed a novel human Tendon-on-a-Chip (hToC), comprised of an endothelialized vascular compartment harboring circulating monocytes and separated by a 5 μm/100 nm dual-scale ultrathin porous membrane from a type I/III collagen hydrogel with primary tendon fibroblasts and tissue-resident macrophages, all under defined serum-free conditions. The hToC models the crosstalk of the various cells in the system leading to the induction of inflammatory and fibrotic pathways including the activation of mTOR signaling. Consistent with phenotypes observed in vivo in mouse models and clinical human samples, we observed myofibroblast differentiation and senescence, tissue contraction, excessive extracellular matrix deposition, and monocytes’ transmigration and macrophages’ secretion of inflammatory cytokines, which were dependent on the presence of the endothelial barrier. This model offers novel insights on the role of vasculature in the pathophysiology of adhesions, which were previously underappreciated. Moreover, in testing whether the hToC could be used to evaluate efficacy of therapeutics, we were able to capture donor-specific variability in the response to Rapamycin treatment, which reduced myofibroblast activation regardless. Thus, our findings demonstrate the value of the hToC as a human microphysiological system for investigating the pathophysiology of fibrotic conditions in the context of peritendinous injury and similar fibrotic conditions, providing an alternative to animal testing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 106 - 106
2 Jan 2024
Sang-Soo L
Full Access

Wear debris from implant interfaces is the major factor leading to periprosthetic osteolysis. Fibroblast-like synoviocytes (FLSs) populate the intimal lining of the synovium and are in direct contact with wear debris. This study aimed to elucidate the effect of Ti particles as wear debris on human FLSs and the mechanism by which they might participate in the bone remodeling process during periprosthetic osteolysis. FLSs were isolated from synovial tissue from patients, and the condition medium (CM) was collected after treating FLSs with sterilized Ti particles. The effect of CM was analyzed for the induction of osteoclastogenesis or any effect on osteogenesis and signaling pathways. The results demonstrated that Ti particles could induce activation of the NFκB signaling pathway and induction of COX-2 and inflammatory cytokines in FLSs. The amount of RANL in the conditioned medium collected from Ti particle-stimulated FLSs (Ti CM) showed the ability to stimulate osteoclast formation. The Ti CM also suppressed the osteogenic initial and terminal differentiation markers for osteoprogenitors, such as alkaline phosphate activity, matrix mineralization, collagen synthesis, and expression levels of Osterix, Runx2, collagen 1α, and bone sialoprotein. Inhibition of the WNT and BMP signaling pathways was observed in osteoprogenitors after the treatment with the Ti CM. In the presence of the Ti CM, exogenous stimulation by WNT and BMP signaling pathways failed to stimulate osteogenic activity in osteoprogenitors. Induced expression of sclerostin (SOST: an antagonist of WNT and BMP signaling) in Ti particletreated FLSs and secretion of SOST in the Ti CM were detected. Neutralization of SOST in the Ti CM partially restored the suppressed WNT and BMP signaling activity as well as the osteogenic activity in osteoprogenitors. Our results reveal that wear debris-stimulated FLSs might affect bone loss by not only stimulating osteoclastogenesis but also suppressing the bone-forming ability of osteoprogenitors. In the clinical setting, targeting FLSs for the secretion of antagonists like SOST might be a novel therapeutic approach for preventing bone loss during inflammatory osteolysis