Advertisement for orthosearch.org.uk
Results 1 - 20 of 304
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 61 - 61
1 Dec 2021
Naghavi SA Hua J Moazen M Taylor S Liu C
Full Access

Abstract. Objectives. Currently, total hip replacement surgery is an effective treatment for osteoarthritis, where the damaged hip joint is replaced with an artificial joint. Stress shielding is a mechanical phenomenon that refers to the reduction of bone density as a result of altered stresses acting on the host bone. Due to solid metallic nature and high stiffness of the current orthopaedic prostheses, surrounding bones undergo too much bone resorption secondary to stress shielding. With the use of 3D printing technology such as selective laser melting (SLM), it is now possible to produce porous graded microstructure hip stems to mimics the surrounding bone tissue properties. Method. In this study we have compared the physical and mechanical properties of two triply periodic minimal surface (TPMS) lattice structure namely gyroid and diamond TPMS. Based on initial investigations, it was decided to design, and 3D print the gyroid and diamond scaffolds having pore size of 800 and 1100 um respectively. Scaffold of each type of structure were manufactured and were tested mechanically in compression (n=8), tension (n=5) and bending (n=1). Results. Upon FEA validation of the scaffold in Abaqus, the desired scaffold for hip implant application was evaluated to have a young's modules of 12.15 GPa, yield strength of 242 MPa and porosity of 55%. Topology and lattice optimization were performed using nTopology to design an optimised graded porous hip implant based on stress shielding reduction. It was understood that the designed optimised hip implant can reduce the stress shielding effect by more than 65% when compared to the conventional generic implant. Conclusions. The designed hip implant presented in this work shows clinical promise in reducing bone loss while having enhanced osseointegration with the surrounding cortical bones. Hence, this will help reduce the risk of periprosthetic fracture and the probability of revision surgery


Bone & Joint Research
Vol. 10, Issue 10 | Pages 639 - 649
19 Oct 2021
Bergiers S Hothi H Henckel J Di Laura A Belzunce M Skinner J Hart A

Aims. Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. Methods. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane. Results. Edge-wear was found predominantly along the superior acetabular edge in all cases, while its median location was 8° (interquartile range (IQR) -59° to 25°) within the anterosuperior quadrant. The deepest point of these scars had a median location of 16° (IQR -58° to 26°), which was statistically comparable to their centres (p = 0.496). Edge-wear was in closer proximity to the superior apex of the cups with greater angles of acetabular inclination, while a greater degree of anteversion influenced a more anteriorly centred scar. Conclusion. The anterosuperior location of edge-wear was comparable to the degradation patterns observed in acetabular cartilage, supporting previous findings that hip joint forces are directed anteriorly during a greater portion of walking gait. The further application of this novel method could improve the current definition of optimal and safe acetabular component positioning. Cite this article: Bone Joint Res 2021;10(10):639–649


Bone & Joint Research
Vol. 9, Issue 8 | Pages 515 - 523
1 Aug 2020
Bergiers S Hothi H Henckel J Eskelinen A Skinner J Hart A

Aims. The optimum clearance between the bearing surfaces of hip arthroplasties is unknown. Theoretically, to minimize wear, it is understood that clearances must be low enough to maintain optimal contact pressure and fluid film lubrication, while being large enough to allow lubricant recovery and reduce contact patch size. This study aimed to identify the relationship between diametrical clearance and volumetric wear, through the analysis of retrieved components. Methods. A total of 81 metal-on-metal Pinnacle hips paired with 12/14 stems were included in this study. Geometrical analysis was performed on each component, using coordinate and roundness measuring machines. The relationship between their as-manufactured diametrical clearance and volumetric wear was investigated. The Mann-Whitney U test and unpaired t-test were used, in addition to calculating the non-parametric Spearman's correlation coefficient, to statistically evaluate the acquired data. Results. The hips in this study were found to have had a median unworn diametrical clearance of 90.31 μm (interquartile range (IQR) 77.59 to 97.40); 32% (n = 26) were found to have been below the manufacturing tolerance. There was no correlation found between clearance and bearing (r. s. = -0.0004, p = 0.997) or taper (r. s. = 0.0048, p = 0.966) wear rates. The wear performance of hips manufactured within and below these specifications was not significantly different (bearing: p = 0.395; taper: p = 0.653). Pinnacles manufactured from 2007 onwards had a greater prevalence of bearing clearance below tolerance (p = 0.004). Conclusion. The diametrical clearance of Pinnacle hips did not influence their wear performance, even when below the manufacturing tolerance. The optimum clearance for minimizing hip implant wear remains unclear. Cite this article: Bone Joint Res 2020;9(8):515–523


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 128 - 128
1 Mar 2017
Royhman D Hallab N Jacobs J Mathew M
Full Access

Modern hip implants feature a modular design, whereby the individual components of the implant are assembled during the surgery. Increased reported failure rates associated with the utilization of modular junctions have raised many clinical concerns about the increased release of metal ions/debris leading to adverse local tissue reactions. Implant materials are subject to a myriad of mechanical motion and forces, and varying electrochemical conditions and pH changes from the surrounding environment. To date, no studies have attempted to model the collected data in order to predict the performance of the materials so that precautions can be taken before the problem reaches the critical stage. This study reports the effects of pH variation, displacement variation, and load variation on the mechanical and corrosion behavior of the hip implant modular junction system, tested with a custom-built fretting-corrosion apparatus. The main objective of this study is to combine the complete data set of the in-vitro experiments to create fretting-corrosion wear maps that can predict the dangerous domains of the hip implant modular system. For each test, the flat portions of two CoCrMo pins were loaded perpendicularly against a Ti6Al4V Rod (Ti alloy) in a Flat-on-flat configuration in a simulated synovial fluid in order to simulate the modular hip implant system. A schematic diagram of contact conditions is presented in Figure 1. A sinusoidal displacement was applied onto the rod, which articulated against the CoCrMo alloy pins, at a frequency of 1Hz. The experiential data from the fretting-corrosion tests has been used to create fretting-corrosion maps. The variables incorporated into the maps include: total mass loss, electrochemical destabilization, pH variation, load variation, displacement variation, and visual examination of the wear features of the contact zone. Total mass loss has been estimated via measurement of the simulator fluid by ICP-MS technique. Electrochemical destabilization was evaluated by a single parameter (V. Drop. ). The electrochemical destabilization of the tribosystem was evaluated by measuring the drop in potential, V. Drop. (V vs. SCE), resultant from the initiation of the fretting phase. The V. Drop. refers to the initial cathodic drop in potential in response to the initial onset of fretting motion. The data from the in vitro fretting-corrosion experiments has been combined to create four fretting-corrosion maps (Figures 2A–3D). Partial slip wear features and mechanical behavior was observed at 25µm displacement. 25–150µm displacement amplitudes showed gross slip behavior. Anything larger than 150µm displayed wear features that were indistinguishable from sliding wear. In general, total mass loss and V. Drop. increased with increasing displacement. Samples that were tested at pH 6.0 or higher showed signs of material transfer and higher V. Drop. Finally, there was a general decrease in V. Drop. with increased applied load and pH. In general, the wears maps were able to offer some predictive validity, however, there were some discrepancies between visual observations and the observed damage parameters. It is possible that other parameters could offer better correlation. Future studies will be conducted to measure other parameters. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 6 - 6
1 Oct 2018
Naudie DD Paish AD Nikolov HN Chmiel T El-Warrak AO Welch ID Teeter MG Holdsworth DW
Full Access

Introduction. As new innovations are developed to improve the longevity of joint replacement components, preclinical testing is necessary in the early stages of research into areas such as osseointegration, metal-cartilage wear and periprosthetic joint infection (PJI). Large-animal studies that test load-bearing components are expensive, however, requiring that animals be housed in special facilities that are not available at all institutions. Comparably, small animal models, such as the rat, offer several advantages including lower cost. Load-bearing implants remain difficult to manufacture via traditional methods in the sizes required for small-animal testing. Recent advances in additive manufacturing (3D metal-printing) have allowed for the creation of miniature joint replacement components in a variety of medical-grade metal alloys. The objective of this work is to create and optimize an image-based 3D-printed rat hip implant system that will allow in vivo testing of functional implant properties in a rat model. Methods. A database of n=25 previously-acquired, 154μm micro-CT volumes (eXplore Locus Ultra, GE Medical) of male Sprague-Dawley rats (390–610g) were analyzed to obtain spatial and angular relationships between several anatomical features of the proximal rat femora. Mean measurements were used to guide the creation of a femoral implant template in computer-aided design software (Solidworks, Dassault Systemes). Several different variations were created, including collarless and collared designs, in a range of sizes to accommodate rats of various weights. Initial prototypes were 3D-printed 316L stainless steel with subsequent iterations printed in Ti6Al4V titanium and F75 cobalt-chrome. Implants were post-processed via sandblasting, hand-polishing, ultrasonic bath, and sterilization in an autoclave. Innate surface texturing was left on manufactured stems to promote osseointegration. Surgical implantation was performed in three live Sprague-Dawley rats (900g, 500g, 750g) with preservation of muscle attachments to the greater trochanter. Micro-CT imaging and X-ray fluoroscopy were performed post-operatively on each animal at 1 day, and 1, 3, 9 and 12 weeks to evaluate gait and component positioning. Results. Implantation of components was successful and each animal was observed to ambulate on its affected limb immediately following recovery from surgery. The 900g rat, given a collarless 316L stainless steel component, was kept for 11 months post-implantation before succumbing to old age. Micro-CT and fluoroscopic findings revealed no evidence of implant subsidence. The 500g animal, given a collarless 316L stainless steel implant, showed evidence of implant subsidence at 3 weeks, with full subsidence and hip dislocation at 12 weeks. The 750g rat, given a collared F75 cobalt-chrome implant, was observed ambulating on its affected limb, but experienced implant rotation and failure at 9 weeks. Conclusions. We report the first hip hemi-arthroplasty in a rat using a 3D-printed metal implant. This model aims to provide a low-cost platform for studying osseointegration, metal-cartilage interactions, and PJI using a functional, loaded implant. Efforts to further optimize the surgical approach will be made to reduce early implant loosening. A study with larger sample sizes is needed to determine if implants can be installed repeatedly, without complications, before the utility of this approach can be validated. Future work will include surface preparations on implant stems, with micro-CT to longitudinally track changes at the bone-metal interface, and gait analysis on a radiolucent treadmill to quantify post-operative kinematics


Bone & Joint Open
Vol. 2, Issue 7 | Pages 476 - 485
8 Jul 2021
Scheerlinck T De Winter E Sas A Kolk S Van Gompel G Vandemeulebroucke J

Aims

Hip arthroplasty does not always restore normal anatomy. This is due to inaccurate surgery or lack of stem sizes. We evaluated the aptitude of four total hip arthroplasty systems to restore an anatomical and medialized hip rotation centre.

Methods

Using 3D templating software in 49 CT scans of non-deformed femora, we virtually implanted: 1) small uncemented calcar-guided stems with two offset options (Optimys, Mathys), 2) uncemented straight stems with two offset options (Summit, DePuy Synthes), 3) cemented undersized stems (Exeter philosophy) with three offset options (CPT, ZimmerBiomet), and 4) cemented line-to-line stems (Kerboul philosophy) with proportional offsets (Centris, Mathys). We measured the distance between the templated and the anatomical and 5 mm medialized hip rotation centre.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 64 - 64
1 Nov 2016
Teeter M Naudie D McCalden R Yuan X MacDonald S
Full Access

The philosophy of cemented total hip arthroplasty (THA) femoral components has become polarised. At one extreme are polished, collarless, tapered devices that are expected to subside; at the other extreme are roughened, non-tapered implants with a collar designed not to subside. Radiostereometric analysis (RSA) allows the accurate measurement of implant movement and has been extensively used for measurement of the in vivo migration of implants. The degree of migration as measured by RSA during the first years after surgery has been shown to correlate with the long-term performance of cemented femoral implants. The purpose of this study was to review the two-year RSA results of two different designs of primary cemented THA stems. Data from two previous prospective RSA trials with two-year follow-up were pooled. The first group included 36 patients who received a Spectron (Smith & Nephew, Memphis, USA) cemented stem. The second group included 13 patients who received an Exeter (Stryker, Mahwah, USA) cemented stem, and 15 patients who received a CPCS (Smith & Nephew, Memphis, USA) cemented stem. All patients underwent RSA examinations shortly post-operation, at 6 weeks, 3 months, 6 months, 1 years, and 2 years. Migration and rotation of the femoral stems was measured at each time point relative to the post-operative exam, and compared between the two groups. There was no difference in age at surgery (Spectron 78 ± 6 years, Exeter/CPCS 77 ± 5 years, p = 0.43), BMI (Spectron and Exeter/CPCS 28 ± 5 kg/m2, p = 0.92), or percentage of male patients (Spectron 23% male, Exeter/CPCS 21% male) between the implant groups. Subsidence was significantly greater (p < 0.0001) at all time points from three months to two years for the Exeter and CPCS stems (0.94 ± 0.39 mm at two years) compared to the Spectron stem (0.05 ± 0.16 mm at two years). There was no significant difference between the stem types for medial-lateral translation (p = 0.07) or anterior-posterior translation (p = 0.49), or for anterior-posterior tilt (p = 0.15), internal-external rotation (p = 0.89), or varus-valgus rotation (p = 0.05). Implant material, design, and surface finish are all factors in the long-term performance of cemented femoral hip implants. In this study, both femoral stem designs had a magnitude of sub-sidence that was within the limits of what is considered to be safe with respect to long-term performance. The continuous subsidence of the Exeter and CPCS stems is consistent with previous reports in the literature


Bone & Joint Research
Vol. 8, Issue 12 | Pages 604 - 607
1 Dec 2019
Konan S Abdel MP Haddad FS

There is continued debate as to whether cemented or cementless implants should be utilized in particular cases based upon chronological age. This debate has been rekindled in the UK and other countries by directives mandating certain forms of acetabular and femoral component fixation based exclusively on the chronological age of the patient. This editorial focuses on the literature-based arguments to support the use of cementless total hip arthroplasty (THA), while addressing potential concerns surrounding safety and cost-effectiveness.

Cite this article: Bone Joint Res. 2019;8(12):604–607.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 119 - 119
1 May 2016
LaCour M Komistek R Meccia B Sharma A
Full Access

Introduction. Currently, knee and hip implants are evaluated experimentally using mechanical simulators or clinically using long-term follow-up. Unfortunately, it is not practical to mechanically evaluate all patient and surgical variables and predict the viability of implant success and/or performance. More recently, a validated mathematical model has been developed that can theoretically simulate new implant designs under in vivo conditions to predict joint forces kinematics and performance. Therefore, the objective of this study was to use a validated forward solution model (FSM) to evaluate new and existing implant designs, predicting mechanics of the hip and knee joints. Methods. The model simulates the four quadriceps muscles, the complete hamstring muscle group, all three gluteus muscles, iliopsoas group, tensor fasciae latae, and an adductor muscle group. Other soft tissues include the patellar ligament, MCL, LCL, PCL, ACL, multiple ligaments connecting the patella to the femur, and the primary hip capsular ligaments (ischiofemoral, iliofemoral, and pubofemoral). The model was previously validated using telemetric implants and fluoroscopic results and is now being used to analyze multiple implant geometries. Virtual implantation allows for various surgical alignments to determine the effect of surgical errors. Furthermore, the model can simulate resecting, weakening, or tightening of soft tissues based on surgical errors or technique modifications. Results. The model revealed PCL weakening leads to paradoxical anterior slide of both femoral condyles. This paradoxical slide reduces maximum flexion and increases knee forces as seen in TKA fluoroscopic studies. Cam/post kinematics in posterior-stabilized designs were also analyzed, revealing cam/post forces increasing linearly with flexion. While cam/post engagement should ideally occur superiorly on the post and move inferiorly throughout knee flexion, fluoroscopy documented implants contacting inferiorly and rolling superiorly with flexion. Thus, a theoretical new implant was simulated to overcome this problem such that TKA design would experience the desired motion, yielding inferior contact in later flexion when forces approach 1.0 × BW. At the hip, the model predicts maximum compressive hip forces of 1.5–2.5 xBW throughout stance phase of gait. The model determines how this force is distributed on the femoral head and acetabular cup throughout the entire activity, allowing wear patterns on implant components to be predicted. During stance phase, the model predicts posterior-to-anterior sliding of the femoral head, with larger magnitudes of motion occurring on the supero-lateral aspect of the cup. The model can predict femoral neck impingement on the acetabular cup and shows that excessive anteversion of the cup leads to the femoral component levering away from the acetabular cup, yielding up to 2.0 mm of hip separation. Conclusions. This study demonstrates the ability of an in-vivo data based forward solution model to evaluate the impact of variation upon implant forces, motion and performance. This will improve understanding of observations such as polyethylene wear, pain associated with excessive soft-tissue forces, subluxation and dislocation, among others. Ultimately, the model could become a theoretical simulator that could evaluate implants much quicker for longer time durations, be less costly and provide comparative analyses when compared to present day experimental simulators


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 123 - 123
1 Feb 2017
Frisch N Lynch J Banglmaier R Silverton C
Full Access

Introduction. The use modular total hip arthroplasty is associated with potentially serious local and systemic complications. Each modular interface introduces a source for wear particle generation. Research suggests the etiology of wear particle generation and subsequent corrosion begins with mechanical fretting and disruption of the protective oxide layer leading to release of metal ions at the taper interface. The purpose of this study was to conduct three dimensional (3D) surface scans of the mating surfaces of the neck-stem taper to identify features that may contribute to the fretting and surface corrosion. Methods. Eighteen modular hip implant components (9 stems and 9 necks) received 3D surface scans to examine the neck-stem taper junction. The study analyzed the neck-stem taper in an as assembled condition so relative surface positions and surface features could be studied. The 9 stems and 9 necks were scanned using an optical scanner. The implant image volume was resolved to a point spacing of 0.5 mm. Measurements were made to determine the normal distance between the surfaces of the neck taper as seated in the stem slot. These measurements were used to produce a color map of the contact proximity between the neck and stem surfaces (Figure 1). Circumferential surface points from the neck and stem at corresponding taper axis heights were used to create surface contour plots to identify surface shape variation and contact. The angle measurements and neck seated depth were analyzed by regression. Results. The typical features observed in these contact maps were: 1) a distinct vertically running line of contact at one end of the transition from the flat surface section to the radius surface section, and present on opposite surfaces in the same location; 2) distinct vertically running line of contact in the radius surface section just past the centerline on the side further away from the transition contact, and also present on the opposite radius section in the same location; 3) a concavity or area of no contact along the flat surface exists between the neck and stem components; and 4) one of the neck flat surfaces was closer to its mating surface on the stem. The plot colors show contact proximity ranging from 0 – 0.025 mm, 0.025 – 0.050 mm, and 0.050 – 0.075 mm. The average neck seated depth in the stem was 14.181 mm, ranging from 13.796 mm to 14.422 mm. Regression analysis showed that the seated depth of the neck was dependent on the taper angles in the flat section of the neck (R. 2. = 0.5000, p = 0.0332). Conclusions. Three dimensional scans and analysis suggest that the shape of the neck and stem tapers deviate from ideal design dimensions, which results in a contact pattern and component fit with gaps between the mating surfaces and rotated alignment. The probable cause of the dimensional deviation is due to machine tool deflection during manufacture. The combination of the contact and fit is expected to contribute to relative motions between the neck and stem, exacerbating the MACC


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 156 - 157
1 May 2011
Wuestemann T Bastian A Schmidt W Cedermark C Streicher R Parvizi J Rothman R
Full Access

Introduction: Clinical experience has shown that addressing variations in bone morphology is important in the development of successful hip implant designs. Numerous studies of femoral bone morphology have been published utilizing various techniques. This study has developed a method which consistently measures large quantities of 3-dimensional digital femura geometry segmented from computed tomography (CT) scans and can accurately make anatomical measurements from these images. Methods: CT images of left femora on five hundred fifty six left femura (57% male, 43% female), consisting of 69% Caucasian, 16% Asian and 14% unknown were analyzed. The average age was 66 years, ranging from 40 to 93 years. Segmentation of the outer cortical, inner cortical, and marrow boundaries were consistently performed over all CT scans. The positions identified on the reference bone are transformed to the equivalent position on the clinical bone images, from which the dimensional data is extracted and stored. The mediolateral width (MLW), medial offset (MO) and lateral offset (LO) were measured in 10mm increments, ranging from 20mm above the lesser trochanter (LT) to 130mm below the lesser trochanter. The canal flare index was defined as a ratio of the mediolateral width at a section 20mm above the lesser trochanter to the mediolateral width at the isthmus level. Results: The mean mediolateral width at 20mm above the lesser trochanter was 47.0 ± 4.5 (35.1–61.8; n=556). Noble reported 45.4 ± 5.3 (31.0–60.0; n=200), Husmann reported in a neck oriented study 46.3 ± 6.9 (27.6–63.6; n=310) and Laine reported 47.1 ± 4.9 (n=50). The mean medial offset at a section 20mm above the lesser trochanter was 25.1 ± 2.9 (16.7–33.4). In the study by Husmann, a mean of 25.0 ± 5.2 (9.4–45.5) was reported. The mean canal flare index was 4.49 ±.8. Noble reported a mean canal flare index of 3.80 ±.074, Husmann 3.81 ±.83 and Laine 4.3 ±.93. Discussion: In general, the study showed minor differences to published data of proximal bone morphology. However, this more powerful study has shown that there is a higher mean canal flare index than determined by Noble and a similar mean canal flare index as determined by Laine. As reported by Laine, the canal flare index varies significantly with the placement of measurements in the canal. In this study the measurements were performed in a plane oriented by the femoral neck as a hip stem would be placed. The CFI over the isthmus width showed a greater correlation than previously shown by Noble. The novel software tool allows for anatomical measurements that can be applied to an unlimited population size enabling further applications and studies


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 49 - 49
1 Apr 2017
Lancaster-Jones O Al-Hajjar M Thompson J Isaac G Fisher J
Full Access

Background

Many factors contribute to the occurrence of edge-loading conditions in hip replacement; soft tissue tension, surgical position, patient biomechanical variations and type of activities, hip design, etc. The aim of this study was to determine the effect of different levels of rotational and translational surgical positioning of hip replacement bearings on the occurrence and severity of edge-loading and the resultant wear rates.

Method

The Leeds II Hip-Joint Simulator and 36mm diameter alumina matrix composite ceramic bearings (BIOLOX delta, DePuy Synthes, UK) were used in this study. Different levels of mismatch between the reconstructed rotational centres of the head and the cup were considered (2, 3 and 4mm) in the medial-lateral axis. Two cup inclination angles were investigated; an equivalent to 45 and 65 degrees in-vivo, thus six conditions (n=6 for each condition) were studied in total with three million cycles completed for each condition. The wear of the ceramic-on-ceramic bearings were determined using a microbalance (Mettler Toledo, XP205, UK) and the dynamic microseparation displacement was measured using a Liner Variable Differential Transformer.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 30 - 30
1 May 2018
Spiegelberg B Lanting B Howard J Teeter M Naudie D
Full Access

Background

There has been a trend in the evolution of total hip arthroplasty towards increased modularity, with this increase in modularity come some potentially harmful consequences. Modularity at the neck shaft junction has been linked to corrosion, adverse reaction to metal debris and pseudotumor formation.

The aim of this retrieval study is to assess whether the surface integrity of the polyethylene (PE) liner is affected by metal wear debris in a single implant design series of THA revised for trunnionosis.

Method

A retrieval analysis of thirty dual-taper modular neck hip prostheses was performed, the mean time from implantation to revision was 2.7 years (1.02–6.2). The PE liners were analysed using a scanning electron microscope with an energy dispersive spectrometer to assess for metal particles embedded on the liner surface. Serum metal ion levels and inflammatory markers were also analysed.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 464 - 464
1 Nov 2011
Puthumanapully P Browne M
Full Access

Uncemented hip implants commonly have porous coated surfaces that enhance the mechanical interlock with bone, encourage bone ingrowth and promote the formation of a stable interface between prosthesis and bone. However, the presence of tissue, either fibrous or with parts of osseous tissue, at the interface between the implant and the bone has been commonly observed after a few years in vivo. The exact mechanisms that govern the type of tissues formed at the interface are not fully understood and several theories have been proposed. This study aims to employ finite element analysis (FEA) to simulate tissue formation and differentiation around the AML (DePuy, Warsaw, USA) femoral implant by employing a tissue differentiation algorithm based on a mechanoregulatory hypothesis of fracture healing. FE models of the femur were generated using computer tomography (CT) scans. The AML prosthesis was then implanted into the bone and a granulation tissue layer of 0.75mm was created around the implant. The mechanoregulatory hypothesis of Carter et al (J.Orthop, 1988) originally developed to explain fracture healing was used with selected modifications, most notably the addition of a quantitative module to the otherwise qualitative algorithm. The tendency of ossification in the original hypothesis was modified to simulate tissue differentiation to bone, cartilage or fibrous tissue. Normal walking and stair climbing loads were used for a specified number of cycles reflecting typical patient activity post surgery. The transformation of granulation tissue to one of the three simulated tissue types was evident as the iterations progressed. The majority of the tissue type formed initially was cartilage and bone (~40% each), and occupied the mid to distal regions of the implant respectively. After tissue stabilisation, the prominent tissue type was bone (65%), occupying most of the mid-distal regions with a significant decline in cartilage tissue formed. This has been shown in clinical retrieval studies with the same implant, where maximum bone ingrowth is in the mid-distal regions of the implant, directly corresponding to the region where there is minimal micromotion. This would be the case with a diaphyseal fixation, which most AML prostheses employ for stability. Fibrous tissue formation was limited to the proximal-medial regions (~10%), with the remainder of the proximal regions filled with cartilage tissue. In addition, predicted bone formation was along the lines of the more stable cartilage tissue as opposed to directly replacing fibrous tissue. The formation of bone would require repeated periods of minimal micromotion and stress at the interface tissue; this was facilitated by the presence of cartilage tissue around the mid regions of the implant. The micromotion and interface stresses in the proximal regions of the implant were too high to encourage bone ingrowth, resulting in the presence of tissue that remained fibrous throughout the process. The FE model, employing a very simple tissue differentiation hypothesis and algorithm was able to predict the formation of different tissues at the interface. Initial bone formation was rapid, occupying the distal regions of the implant, and then gradually occupying a larger portion of the mid-regions around the implant. The proximal regions were largely occupied by a combination of fibrous and cartilage tissue. Overall, the presence of bone and cartilage tissue accounted for nearly 85% of the tissue formed which would suggest a very stable interface as predicted by the Carter’s hypothesis


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 154 - 154
1 May 2011
Santori FS Piciocco P Fredella N Santori N
Full Access

The lastest biomechanical studies have shown that the load in the proximal femur is transferred not only medially but also laterally. Following these new philosophies, an original ultra-short stem with extensive proximal load transfer was developed. The main features of this implant are: an almost complete absence of the diaphyseal portion of the stem; a well defined lateral flare with load transfer also on the lateral column of the femur; and a high femoral neck cut which allows the preservation of most of the anterior, posterior and medial wall of the femoral neck (giving a complete proximal circumferencial bone in-growth). The implant, which we began to use in 1995 as a custom made prosthesis based on pre-operative CT data (140 cases), and later as a standard prosthesis (Proxima Hip 347 cases) was, in the first years, recommended only for young and active patients before being extended with very large indications also to elderly ones. Purpose of this paper is to present clinical and radiological results of 487 implants with an 7 yrs average follow-up. (14 yrs to 3 months). Harris Hip Score (HHS) formed the basis of the clinical assessment. Serial post-operative AP and lateral radiographs were taken for all patients.

Excellent results were reported: patients were followed-up for up to 14 years in all the series there were no revisions for aseptic loosening and only one case was revised for a deep infection. The mean HHS increased from 44.8 pre-operatively to 98.6 post-operatively at the latest follow-up. Tight pain was recorded only in one case. Other complications included 3 dislocations and 2 superficial wound infections. Radiographically good periprosthetic bone remodelling with increase of the bone stock around the implant. No radiolucent lines, subsidence or loosening have been observed.

In conclusion after a 14 year experience we can assert that neck preservation combined with a proximal lateral flare support guarantees a more natural loading of the femur and large indications. The absence of the stem makes this implant ideal not only for conventional surgical approach but also for MIS.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 158 - 158
1 Dec 2013
Reimeringer M Nuño N
Full Access

Introduction

Modeling the press-fit that occurs in Total Hip Arthroplasty (THA) cementless implants is crucial for the prediction of micromotion using finite element analysis (FEA). Some studies investigated the effect of the press-fit magnitude and found a direct influence on the micromotion [1,2]. They assumed in their model that press-fit occurs throughout the prosthesis. However [3] found using computed tomography measurement that only 43% of the stem-bone interfaces is really in contact. The aim of this study is to investigate the press-fit effect at the stem-bone interface on the implant micromotion.

Methods

Finite element analysis (FEA) was performed on a Profemur® TL implanted into a Sawbones®. The implant orientation was validated in a previous study [4]. All materials were defined as linear isotropic homogeneous. FEA was carried out for the static loading conditions defined by [5] simulating walking fastly. Frictional contact between the bone and the prosthesis was assumed all along the prosthesis with a coefficient μ set to 0, 63 for the plasma spray (Fig. 1a) and 0,39 for the polished surface (Fig. 1b) [6]. Firstly, FEA was performed without press-fit (Fig. 2a) and then press-fit was simulated with an interference of 0,05 mm [2] between stem and bone in specific areas: superior (Fig. 2b), intermediate (Fig. 2c), inferior (Fig. 2d), and cortical alone (Fig. 2e) and finally over the entire surface in contact with the bone. The press-fit effect at the stem-bone interface on the micromotion was investigated. Measurement of the micromotion was realised on different points located on the plasma spray surface by calculating the difference between the final displacement of the prosthesis and the final displacement of the bone.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 105 - 105
1 Mar 2013
Kothny C Jerosch J Kreuzer S
Full Access

Aim

The purpose of the study was to analyse short- and medium-term results of a modern cementless short stem design hip joint endoprosthesis together with different parameters (offset, CCD, leg length), radiological findings and scores.

Material and Methods

186 cases using a metaphyseal fixed short stem prosthesis (MiniHip, Corin) at two hospitals were included for clinical follow-up. 180 patients were available for clinical follow-up with standardized scores: Oxford-Hip Score (OHS), Hip Dysfunction an Osteoarthritis Outcome Score (HOOS) and EQ-5D – Score. The scores were caught preoperatively and postoperatively every year.

Further on we could do a prospective radiological study of 250 consecutive hips with degenerative hip osteoarthritis were included (246 patients). These patients were operated by five different surgeons at 4 different hospitals. Standardized X-rays were performed with the same technique pre- and postoperatively in all patients. Different anatomical parameters of the hip were documented by using the pre- and postoperative x-rays (Offset, CCD angle, length of leg).

The 250 patients included 129 female and 117 male. The average age of the patients was 59.7 years (range: 27–82 years).

The whole follow-up and all measurements were performed by an independent examiner.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 154 - 154
1 Mar 2008
Alford KS Komistek RD Dennis DA
Full Access

Polyethylene debris can cause patient osteolysis, patient pain and discomfort, and implant revision. Previous fluoroscopic studies have determined the incidence of femoral head separation from the acetabular cup, but clinical significance of this phenomenon has not been established. It has been hypothesized that hip separation may lead to polyethylene wear, while others hypothesize that hip separation may be occurring due to wear. Therefore, the purpose of the study is to conduct an in vivo kinematic analysis to determine if there is a correlation between-femoral head separation and wear and to utilize a mathematical modeling to determine the clinical significance of these variables.

Twenty subjects were strategically selected to participate in this study. Ten subjects were determined to have at least1.0 mm of polyethylene wear, while ten subjects had less than 0.1 mm of polyethylene wear. All 20 patients were asked to perform gait on a treadmill while under fluoroscopic surveillance. The incidence of femoral head separation was determined for each subject. Then, a three-dimensional mathematical model of the hip joint was used to determine bearing surface conditions for each subject.

Fifty-five percent of the subjects evaluated demonstrated femoral head separation. Subjects deemed to have greater than 1.0 mm of wear experienced less separation, on average and overall magnitude than subjects without wear. In this study, only 10% of the subjects tested-demonstrated no wear and no separation. The derived force profiles in this study were greater for both groups, compared with the non-implanted hips, previously evaluated. The forces in the hip joint ranged from 2.0 to 3.0times body weight.

Although it was expected that subjects having more wear would have greater magnitudes of femoral head separation, the opposite was true. Further kinetic analysis determined that the subjects having wear also experienced greater force profiles through gait. Therefore, it is assumed that the subjects having wear may have been-implanted with a tighter socket, thus leading to greater shear forces.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 106 - 106
10 Feb 2023
Lin D Xu J Weinrauch P Yates P Young D Walter W
Full Access

Hip resurfacing arthroplasty (HRA) is a bone conserving alternative to total hip arthroplasty. We present the early 1 and 2-year clinical and radiographical follow-up of a novel ceramic-on-ceramic (CoC) HRA in a multi-centric Australian cohort.

Patient undergoing HRA between September 2018 and April 2021 were prospectively included. Patient-reported outcome measures (PROMS) in the form of the Forgotten Joint Score (FJS), HOOS Jr, WOMAC, Oxford Hip Score (OHS) and UCLA Activity Score were collected preoperatively and at 1- and 2-years post-operation. Serial radiographs were assessed for migration, component alignment, evidence of osteolysis/loosening and heterotopic ossification formation.

209 patients were identified of which 106 reached 2-year follow-up. Of these, 187 completed PROMS at 1 year and 90 at 2 years. There was significant improvement in HOOS (p< 0.001) and OHS (p< 0.001) between the pre-operative, 1-year and 2-years outcomes. Patients also reported improved pain (p<0.001), function (p<0.001) and reduced stiffness (p<0.001) as measured by the WOMAC score. Patients had improved activity scores on the UCLA Active Score (p<0.001) with 53% reporting return to impact activity at 2 years. FJS at 1 and 2-years were not significantly different (p=0.38). There was no migration, osteolysis or loosening of any of the implants. The mean acetabular cup inclination angle was 41.3° and the femoral component shaft angle was 137°. No fractures were reported over the 2-year follow-up with only 1 patient reporting a sciatic nerve palsy.

There was early return to impact activities in more than half our patients at 2 years with no early clinical or radiological complications related to the implant. Longer term follow-up with increased patient numbers are required to restore surgeon confidence in HRA and expand the use of this novel product.

In conclusion, CoC resurfacing at 2-years post-operation demonstrate promising results with satisfactory outcomes in all recorded PROMS.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 39 - 39
19 Aug 2024
Zuke WA Hannon CP Kromka J Granger C Clohisy JC Barrack RL
Full Access

We previously reported the five to ten-year results of the Birmingham Hip Resurfacing (BHR) implant. The purpose of this study was to evaluate the survivorship, radiographic results, and clinical outcomes of the BHR at long-term follow-up.

We retrospectively reviewed 250 patients from the original cohort of 324 BHRs performed from 2006 to 2013 who met contemporary BHR indications. Of these, 4 patients died and 4 withdrew. From the 242 patients, 224 patients (93%) were available for analysis. Modified Harris hip score (mHHS) and University of California, Los Angeles (UCLA) scores were collected and compared to a matched total hip arthroplasty (THA) cohort. Mean follow-up was 14 years.

Survivorship free of aseptic revision was 97.4% and survivorship free of any revision was 96.0% at 15 years. Revisions included 3 periprosthetic joint infections, 2 for elevated metal ions and symptomatic pseudotumor, 2 for aseptic femoral loosening, and 1 for unexplained pain. The mean mHHS was 93 in BHR patients at final follow-up, similar to the THA cohort (p=0.44). The UCLA score was significantly higher for BHR patients (p=0.02), however there were equal proportions of patients who remained highly active (UCLA 9 or 10) in both groups, 60.5% and 52.2% (p=0.45) for BHR and THA respectively. Metal ion levels at long term follow-up were low (mean serum cobalt 1.8±1.5 ppb and mean serum chromium 2.2±2.0 ppb).

BHR demonstrated excellent survivorship in males less than 60 years of age at time of surgery. Clinical outcomes and activity levels were similar to THA patients. Failures related to the metal-on-metal bearing were rare and metal levels were low at long-term follow-up.

Level of evidence: III

Keywords: survivorship; hip arthroplasty; activity; metal-on-metal

Surface Replacement Arthroplasty demonstrates low revision rates and similar activity level compared to total hip arthroplasty at long-term follow-up.