Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

FORWARD SOLUTION MODEL: FUTURE METHOD FOR PREDICTING KNEE & HIP IMPLANT LONGEVITY

The International Society for Technology in Arthroplasty (ISTA), 28th Annual Congress. PART 2.



Abstract

Introduction

Currently, knee and hip implants are evaluated experimentally using mechanical simulators or clinically using long-term follow-up. Unfortunately, it is not practical to mechanically evaluate all patient and surgical variables and predict the viability of implant success and/or performance. More recently, a validated mathematical model has been developed that can theoretically simulate new implant designs under in vivo conditions to predict joint forces kinematics and performance. Therefore, the objective of this study was to use a validated forward solution model (FSM) to evaluate new and existing implant designs, predicting mechanics of the hip and knee joints.

Methods

The model simulates the four quadriceps muscles, the complete hamstring muscle group, all three gluteus muscles, iliopsoas group, tensor fasciae latae, and an adductor muscle group. Other soft tissues include the patellar ligament, MCL, LCL, PCL, ACL, multiple ligaments connecting the patella to the femur, and the primary hip capsular ligaments (ischiofemoral, iliofemoral, and pubofemoral). The model was previously validated using telemetric implants and fluoroscopic results and is now being used to analyze multiple implant geometries. Virtual implantation allows for various surgical alignments to determine the effect of surgical errors. Furthermore, the model can simulate resecting, weakening, or tightening of soft tissues based on surgical errors or technique modifications.

Results

The model revealed PCL weakening leads to paradoxical anterior slide of both femoral condyles. This paradoxical slide reduces maximum flexion and increases knee forces as seen in TKA fluoroscopic studies. Cam/post kinematics in posterior-stabilized designs were also analyzed, revealing cam/post forces increasing linearly with flexion. While cam/post engagement should ideally occur superiorly on the post and move inferiorly throughout knee flexion, fluoroscopy documented implants contacting inferiorly and rolling superiorly with flexion. Thus, a theoretical new implant was simulated to overcome this problem such that TKA design would experience the desired motion, yielding inferior contact in later flexion when forces approach 1.0 × BW.

At the hip, the model predicts maximum compressive hip forces of 1.5–2.5 xBW throughout stance phase of gait. The model determines how this force is distributed on the femoral head and acetabular cup throughout the entire activity, allowing wear patterns on implant components to be predicted. During stance phase, the model predicts posterior-to-anterior sliding of the femoral head, with larger magnitudes of motion occurring on the supero-lateral aspect of the cup. The model can predict femoral neck impingement on the acetabular cup and shows that excessive anteversion of the cup leads to the femoral component levering away from the acetabular cup, yielding up to 2.0 mm of hip separation.

Conclusions

This study demonstrates the ability of an in-vivo data based forward solution model to evaluate the impact of variation upon implant forces, motion and performance. This will improve understanding of observations such as polyethylene wear, pain associated with excessive soft-tissue forces, subluxation and dislocation, among others. Ultimately, the model could become a theoretical simulator that could evaluate implants much quicker for longer time durations, be less costly and provide comparative analyses when compared to present day experimental simulators.


*Email: