Aims. The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA). Methods. A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every
Aims. Bi-unicondylar arthroplasty (Bi-UKA) is a bone and anterior cruciate ligament (ACL)-preserving alternative to total knee arthroplasty (TKA) when the patellofemoral joint is preserved. The aim of this study is to investigate the clinical outcomes and biomechanics of Bi-UKA. Methods. Bi-UKA subjects (n = 22) were measured on an instrumented treadmill, using standard gait metrics, at top walking speeds. Age-, sex-, and BMI-matched healthy (n = 24) and primary TKA (n = 22) subjects formed control groups. TKA subjects with preoperative patellofemoral or tricompartmental arthritis or ACL dysfunction were excluded. The Oxford Knee Score (OKS) and EuroQol five-dimension questionnaire (EQ-5D) were compared. Bi-UKA, then TKA, were performed on eight fresh frozen cadaveric knees, to investigate knee extensor efficiency under controlled laboratory conditions, using a repeated measures study design. Results. Bi-UKA walked 20% faster than TKA (Bi-UKA mean top walking speed 6.7 km/h (SD 0.9),TKA 5.6 km/h (SD 0.7), p < 0.001), exhibiting nearer-normal vertical ground reaction forces in maximum weight acceptance and mid-stance, with longer step and stride lengths compared to TKA (p < 0.048). Bi-UKA subjects reported higher OKS (p = 0.004) and EQ-5D (p < 0.001). In vitro, Bi-UKA generated the same extensor moment as native knees at low
The ligament balance as well as the alignment is essential for successful total knee arthroplasty (TKA). However it is usually assessed and adjusted only at 0? and 90?. In order to evaluate the ligament balance at the other angles we have used a navigation system. Twenty-one patients underwent posterior stabilised mobile bearing TKA using a CT-based navigation system were included in this study. Immediately post-operation and still under anaesthesia, varus and valgus stresses were applied on operated knees manually at 0?, 30?, 60?, 90? and 120?. The ligament balance was calculated based on the angles under varus and valgus stress displayed on the navigation screen, presenting a relationship between the femoral and tibial cutting planes. The mean ligament balance angle at 0?, 30?, 60?, 90? and 120? were −2? ± 3.6?, −5.8? ± 7.9?, 5.0? ± 6.9?, −1.3? ± 5.4?, 7.9? ± 7.2?, respectively. At 0? and 90? balance was well adjusted, however in the other angles, it was quite varied. At 30? and 120?, the lateral side was loose, on the other hand, medial side was looser at 60? knee flexion angle. The good balance at 0? and 90? is understandable because the balance is assessed and adjusted in these angles. Regarding the other angles, the 30? and 120? results corresponded with previous studies; however, the 60? results did not correlate. Although the reason is unknown, it must be aware the mid-flexion and deep flexion instability is quite common. Further investigations about the impact on clinical outcomes of such instabilities and how to adjust them if they are critical are needed.
Abstract. Introduction. Historic MCL reconstruction techniques focused on the superficial MCL to restore valgus stability while overlooking tibial external rotation and the deep MCL. This study assessed the ability of a contemporary medial collateral ligament (MCL) reconstruction and a deep MCL (dMCL) reconstruction to restore rotational and valgus knee stability. Methods. Six pairs fresh-frozen cadaveric knee specimens with intact soft tissue were tested in four states: 1) intact 2) after sMCL and dMCL sectioning, 3) contemporary MCL reconstruction (LaPrade et al), and 4) dMCL reconstruction. In each state, four loading conditions were applied at varying
Introduction and Objective. Zone 2 flexor tendon injuries are still one of the challenges for hand surgeons. It is not always possible to achieve perfect results in hand functions after these injuries. There is no consensus in the literature regarding the treatment of zone 2 flexor tendon injuries, tendon repair and surgical technique to be applied to the A2 pulley. The narrow fibro-osseous canal structure in zone 2 can cause adhesions and loss of motion due to the increase in tendon volume due to surgical repair. Different surgical techniques have been defined to prevent this situation. In our study, in the treatment of zone 2 flexor tendon injuries; Among the surgical techniques to be performed in addition to FDP tendon repair; We aimed to compare the biomechanical results of single FDS slip repair, A2 pulley release and two different pulley plasty methods (Kapandji and V-Y pulley plasty). Materials and Methods. In our study, 12 human upper extremity cadavers preserved with modified Larssen solution (MLS) and amputated at the mid ½ level of the arm were used. A total of 36 fingers (second, third and the fourth fingers were used for each cadaver) were divided into four groups and 9 fingers were used for each group. With the finger fully flexed, the FDS and FDP tendons were cut right in the middle of the A2 pulley and repaired with the cruciate four-strand technique. The surgical techniques described above were applied to the groups. Photographs of fingers with different loads (50 – 700 gr) were taken before and after the application. Proximal interphalangeal (PIP) joint angle, PIP joint maximum
The optimal timing of when to perform manipulation under anesthesia (MUA) for stiffness following total knee arthroplasty (TKA) is unclear. This study aimed to identify the risk factors for MUA following primary TKA and whether performing an “early” MUA within 3 months results in a greater improvement in range of motion. Primary TKAs performed between January 2013 and December 2018 at three tertiary New Zealand hospitals were reviewed. International Classification of Diseases discharge coding was used to identify patients who underwent an MUA. Multivariate Cox regression was performed to identify patient and surgical risk factors for MUA. Pre- and post-MUA knee flexion angles were identified through manual review of operation notes. Multivariate linear regression was performed to compare the mean
Mechanical alignment (MA) in total knee arthroplasty (TKA), although considered the gold standard, reportedly has up to 25% of patients expressing post-operative dissatisfaction. Biomechanical outcomes following kinematic alignment (KA) in TKA, developed to restore native joint alignment, remain unclear. Without a clear consensus for the optimal alignment strategy during TKA, the purpose of this study was to conduct a paired biomechanical comparison of MA and KA in TKA by experimentally quantifying joint laxity and medial collateral ligament (MCL) strain. 14 bilateral native fresh-frozen cadaveric lower limbs underwent medially-stabilised TKA (GMK Sphere, Medacta, Switzerland) using computed CT-based subject-specific guides, with KA and MA performed on left and right legs, respectively. Each specimen was subjected to sensor-controlled mediolateral laxity tests. A handheld force sensor (Mark-10, USA) was used to generate an abduction-adduction moment of 10Nm at the knee at fixed
Aims. Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model. Methods. We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition. Results. Mid-level inserts reduced varus angulations compared to PS inserts by a median of 0.4°, 0.9°, and 1.5° at 0°, 30°, and 90° of flexion, respectively, and reduced valgus angulations by a median of 0.3°, 1.0°, and 1.2° (p ≤ 0.027 for all comparisons). Mid-level inserts reduced net IE rotations by a median of 5.6°, 14.7°, and 17.5° at 0°, 30°, and 90°, respectively (p = 0.012). Mid-level inserts reduced anterior tibial translation only at 90° of flexion by a median of 3.0 millimetres (p = 0.036). With an applied varus moment, the mid-level insert decreased LCL force compared to the PS insert at all three
Previous studies have identified the anterolateral complex (ALC) as having an important role in controlling anterolateral rotatory laxity following anterior cruciate ligament injury and subsequent reconstruction. In particular, injury to the iliotibial band (ITB) and its component deep (dITB) and capsulo-osseous (coITB) layers, have been shown to significantly correlate with different grades of the pivot-shift test in patients with acute ACL injuries. However, the kinematic properties of the capsulo-osseous layer of the ITB, throughout knee range of motion, are not fully understood. The purpose of this study was to quantify the kinematic behaviour of the capsulo-osseous layer of the ITB through various degrees of knee flexion. Ten fresh-frozen cadaveric knee specimens were dissected to expose the capsulo-osseous layer of the iliotibial band. Radiopaque beads were embedded, at standardized increments (12.5%, 25%, 50% and 75% of total length from proximal to distal), into the tissue and fluoroscopic images were taken from 0o to 105o of knee flexion in 15° increments. The positions of the beads were identified in each image and the length, width, and area changes of the capsulo-osseous layer were calculated. Comparisons of the total length of the anterior and posterior borders of the coITB through knee ROM were conducted using a two-way (8 knee angles by 2 borders) repeated measures analysis of variance (rm-ANOVA), whereas the effect of knee angle on isometry and total area changes was assessed using one-way rm-ANOVAs (α=0.05). There was a significant increase in the length of the anterior capsulo-osseous layer at
Aims. Unicompartmental knee arthroplasty (UKA) has become a popular method of treating knee localized osteoarthritis (OA). Additionally, the posterior cruciate ligament (PCL) is essential to maintaining the physiological kinematics and functions of the knee joint. Considering these factors, the purpose of this study was to investigate the biomechanical effects on PCL-deficient knees in medial UKA. Methods. Computational simulations of five subject-specific models were performed for intact and PCL-deficient UKA with tibial slopes. Anteroposterior (AP) kinematics and contact stresses of the patellofemoral (PF) joint and the articular cartilage were evaluated under the deep-knee-bend condition. Results. As compared to intact UKA, there was no significant difference in AP translation in PCL-deficient UKA with a low
Although the pre- or intraoperative
Abstract. Introduction. Persistent medial laxity increases the risk of failure for ACL reconstruction. To address this, multiple reconstruction techniques have been created. To date, no single strand reconstruction constructs have been able to restore both valgus and rotational stability. In response to this, a novel single strand Short Isometric Construct (SIC) MCL reconstruction was developed. Methods. Eight fresh-frozen cadaveric specimens were tested in three states: 1) intact 2) after sMCL and dMCL transection, and 3) after SIC MCL reconstruction. In each state, four loading conditions were applied at varying
Background. Lateral ankle instability is a common problem, but the precise role of the lateral ankle structures has not been accurately investigated. This study aimed to accurately investigate lateral ankle complex stability for the first time using a novel robotic testing platform. Method. A six degrees of freedom robot manipulator and a universal force/torque sensor were used to test 10 foot and ankle specimens. The system automatically defined the path of unloaded plantar/dorsi flexion. At four
Total knee replacement (TKR) design aims to restore normal kinematics with emphasis on flexion range. The survivorship of a TKR is dependent on the kinematics in six-degrees-of-freedom (6-DoF). Stepping up, such as stair ascent is a kinematically demanding activity after TKR. The debate about design choice has not yet been informed by 6-DoF in vivo kinematics. This prospective randomised controlled trial (RCT) compared kneeling kinematics in three TKR designs. 68 participants were randomised to receive either cruciate retaining (CR-FB), rotating platform (CR-RP) or posterior stabilised (PS-FB) prostheses. Image quality was sufficient for 49 of these patients to be included in the final analysis following a minimum 1-year follow-up. Patients completed a step-up task while being imaged using single-plane fluoroscopy. Femoral and tibial computer-aided design (CAD) models for each of the TKR designs were registered to the fluoroscopic images using bespoke software OrthoVis to generate six-degree-of-freedom kinematics. Differences in kinematics between designs were compared as a function of flexion. There were no differences in terminal extension between the groups. The CR-FB was further posterior and the CR-RP was more externally rotated at terminal extension compared to the other designs. Furthermore, the CR-FB designs was more posteriorly positioned at each
Introduction. Joint kinematics following total knee replacement (TKR) is important as it affects joint loading, joint functionality, implant wear and ultimately patient comfort and satisfaction. It is believed that restoring the natural motion of the joint (such as the screw-home mechanism) with a medial pivot knee implant will improve clinical outcomes. Daily activities such as stair climbing and stair descent are among the most difficult tasks for these patients. This study analysed dynamic knee joint motion after implantation of a medial pivot knee implant using fluoroscopy during stair ascent and descent activity. Methods. Ethics approval was granted by Macquarie University to undertake fluoroscopic testing. Four patients who had undergone a TKR were asked to participate in the study. All patients were operated by a single surgeon (JS) and were implanted with a medial pivot knee prosthesis (Sphere, Medacta International). Participants were tested at the 12 month post-operative time- point. Participants were asked to step up or down a short stair-case at a comfortable self-selected speed. Fluroscopic images were taken using a flat panel Artis Zeego (Siemens Healthcare GmbH, Erlangen) angiography system during the dynamic activity. Images were processed using Joint Track Auto (Banks, University of Florida), whereby the specific femoral and tibial component CAD files were superimposed onto the fluoroscopic images, ensuring an optimised match to the outlined components. Joint kinematics were calculated using custom written code in Matlab 2017a. Results. The average maximum
Introduction. Pre-clinical assessment of total knee replacements (TKR) can provide useful information about the constraint provided by an implant, and therefore help the surgeon decide the most appropriate configurations. For example, increasing the posterior tibial slope is believed to delay impingement in deep flexion and thus increase the maximal
Purpose. Factors influencing
Introduction. Range of motion (ROM) is one of the important factor for better functional outcome after total knee arthroplasty (TKA). In posterior cruciate ligament (PCL) retaining (CR) TKA, adequate PCL function is suggested to be important for better kinematics and ROM. However, intraoperative assessment of PCL function is relatively subjective, thus more objective evaluation is required to improve the functional outcomes after TKA. In clinical practice, tibial posterior sagging sign is well known to indicate PCL deficiency. Hence, we hypothesized that intraoperative femorotibial antero-posterior (AP) changes at 90° of flexion indirectly reflected the PCL function and associated with postoperative maximum
Introduction. In the previous study regarding the relationship among maximum hip flexion, the pelvis, and the lumbar vertebrae on the sagittal plane, we have found in X-rays that the lumbo lordotic angle (LLA) and the sacral slope angle (SSA) have a large impact on hip
Combined Partial Knee Arthroplasty (CPKA) is a promising alternative to Total Knee Arthroplasty (TKA) for the treatment of multi-compartment arthrosis. Through the simultaneous or staged implantation of multiple Partial Knee Arthroplasties (PKAs), CPKA aims to restore near-normal function of the knee, through retention of the anterior cruciate ligament and native disease-free compartment. Whilst PKA is well established, CPKA is comparatively novel and associated biomechanics are less well understood. Clinically, PKA and CPKA have been shown to better restore knee function compared to TKA, particularly during fast walking. The biomechanical explanation for this superiority remains unclear but may be due to better preservation of the extensor mechanism. This study sought to assess and compare extensor function after PKA, CPKA, and TKA. An instrumented knee extension rig facilitated the measurement extension moment of twenty-four cadaveric knees, which were measured in the native state and then following a sequence of arthroplasty procedures. Eight knees underwent medial Unicompartmental Knee Arthroplasty (UKA-M), followed by patellofemoral arthroplasty (PFA) thereby converting to medial Bicompartmental Knee Arthroplasty (BCA-M). In the final round of testing the PKA implants were removed a posterior-cruciate retaining TKA was implanted. The second eight received lateral equivalents (UKA-L then BCA-L) then TKA. The final eight underwent simultaneous Bi-Unicondylar Arthroplasty (Bi-UKA) before TKA. Extensor efficiencies over extension ranges typical of daily tasks were also calculated and differences between arthroplasties were assessed using repeated measures analysis of variance. For both the medial and lateral groups, UKA demonstrated the same extensor function as the native knee. BCA resulted in a small reduction in extensor moment between 70–90° flexion but, in the context of daily activity, extensor efficiency was largely unaffected and no significant reductions were found. TKA, however, resulted in significantly reduced extensor moments, leading to efficiency deficits ranging from 8% to 43% in flexion ranges associated with downhill walking and the stance phase of gait, respectively. Comparing the arthroplasties: TKA was significantly less efficient than both UKA-M and BCA-M over ranges representing stair ascent and gait; TKA showed a significant 23% reduction compared to BCA-L in the same range. There were no differences in efficiency between the UKAs and BCAs over any flexion range and TKA efficiency was consistently lower than all other arthroplasties. Bi-UKA generated the same extensor moment as native knee at