Aims. Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (. 99m. Tc-UBI. 29-41. -Cy5) and its ability to visualize the bacterial load on
Purpose of the study: Hip resurfacing with a metal-on-metal bearing gives good mid-term clinical results. The design of the femoral piece has an effect on implant longevity, as does the vitality of the underlying cephalic bone. Computer-assisted surgery has been helpful in position the implant but the choice of the best position is still empirical. Prosthesis designers recommend valgus, but with too much there is a risk of a superolaterl notch which would weaken the neck. This leads the surgeon to use a larger
Metal-on-metal hip resurfacing arthroplasty has been reintroduced as an alternative to total hip replacement. Uncemented acetabular fixation is now the gold standard for this procedure. However, uncemented femoral component fixation is less common. We thus report our preliminary results of an uncemented, hydroxyapatite-coated
The success of a cementless Total Hip Arthroplasty (THA) depends not only on initial micromotion, but also on long-term failure mechanisms, e.g., implant-bone interface stresses and stress shielding. Any preclinical investigation aimed at designing
Purpose: The Exeter technique opens new perspectives for the treatment of femoral bone loss observed at revision hip arthroplasty. Early migration of the implant, considered by the advocates of the technique to be beneficial when limited, can, in the absence of secondary instability, weaken the cement shield leading to early revision. Several publications on this topic have examined the improvement in primary stability achieved by modifying the impaction technique or by searching for the ideal size of the grafts. The purpose of the present study was to examine the reproducibility of this method and its effect on transformation of the allograft. Material and methods: We performed a prospective analysis of outcome in 46 patients operated on since 1996. The Poste-Merle-d’Aubigné (PMA) clinical score and the Ling and Gie radiographic score as well as the SOFCOT score for substance loss were determined. We used frozen fragmented allografts without consideration of graft size. A standard sized
Negative remodelling of the femoral cortex in the form of calcar resorption due to stress-shielding, and femoral cortical hypertrophy at the level of the tip of the implant due to distal load transfer, is frequenly noted following cemented total hip replacement, most commonly with composite beam implants, but also with polished double tapered components. The C-stem polished femoral component was designed with a third taper running from lateral to medial across and along the entire length of the implant, with the aim of achieving more proximal and therefore more natural loading of the femur. The implant is designed to subside within the femoral cement mantle utilising the cement property of creep, generating hoop stresses, which are transferred more proximally to the femoral bone, starting at the level of the medial calcar. The intention is to load the proximal femur minimising stress-shielding and calcar resorption, as well as reducing distal load transfer as signified by the lack of distal femoral cortical hypertrophy. We present the results of a consecutive series of 500 total hip replacements using C-stem femoral components, performed between March 2000 and December 2005 at a single institution. Data was collected prospectively and all patients remain under annual follow-up by a Specialist Arthroplasty Practitioner. The operations were performed using a standard surgical technique with third generation cementing using Palacos-R antibiotic loaded cement. 500 arthroplasties were performed on 455 patients with an average age at the time of surgery of 68.3 years (23-92). There were 282 (62%) female and 173 (38%) male patients with osteoarthritis being the predominant diagnosis. 77 patients have died (73 hips) and the average duration of follow-up for the entire series is 81 months (52-124). Only 2
Introduction. Ability to accommodate increased range of motion is a design objective of many modern TKA prostheses. One challenge that any “high-flex friendly” prosthesis has to overcome is to manage the femorotibial contact stress at higher flexion angle, especially in the polyethylene tibial insert. When knee flexion angle increases, the femorotibial contact area tends to decrease thus the contact stress increases. For a high-flex design, considerations should be taken to control the contact stress to reduce the risk of early damage or failure on the tibial insert. This study evaluated the effect of
Introduction. Negative remodelling of the femoral cortex in the form of calcar resorption due to stress shielding and cortical hypertrophy at the level of the tip of the implant, due to distal load transfer, is frequently noted following cemented total hip replacement, most commonly with composite beam implants, but also with polished double tapers. The C-stem polished femoral component was designed with a third taper running from lateral to medial across and along the entire length of the implant, with the aim of achieving more proximal and therefore more natural loading of the femur. The hoop stresses generated in the cement mantle are transferred to the proximal bone starting at the calcar, which should theoretically minimise stress-shielding and calcar resorption, as well as reducing distal load transfer, as signified by the development of distal femoral cortical hypertrophy. Materials/Methods. We present the results of a consecutive series of 500 total hip replacements performed between March 2000 and December 2005 at a single institution, using a standard surgical technique and third generation cementing with Palacos-R antibiotic loaded cement. Data was collected prospectively and the patients remain under annual follow-up. 500 arthroplasties were performed on 455 patients with an average age of 68.3 years (23–92). 77 patients have died (73 arthroplasties) and the average duration of follow-up for the entire series is 81 months (52–124). Results. Only 2
The authors report their preliminary experience with a minimum of one year follow –up of hydroxyapatite coating as the means of fixation of the femoral head in hip resurfacing. Between Dec 2003 and Dec 2004, of the 23 cases performed by the senior author,22 were available for follow up,15 were women (68.2%) and 7 were men (31.8). The femoral and acetabular components of the uncemented version of the CORMET 2000(Corin,Cire ncester,UK) were used. The surgical approach was the Hardinge approach in all cases. Patients were assessed pre-operatively for pain and function,using the Harris Hip Score. Post operatively they were assessed in clinic with x rays at 6 weeks,6 months and annually thereafter. X rays were evaluated for pre and post op neck shaft angle,giving an indication of varus or valgus placement of the head prosthesis. The lateral view was assessed to reveal anterior or posterior tilting of the prosthesis. Neck thinning was evaluated by measuring the ratio of the metal cup and bony neck diameters at the cup neck junction, recorded post op and at one year. None of the
Thigh pain following a well-fixed total hip arthroplasty (THA) remains problematic and a source of patient dissatisfaction. The purpose of this study is to evaluate if the development of distal femoral cortical hypertrophy (DFCH) is associated with chronic postoperative thigh pain after THA with a short stem implant. All patients who underwent an uncomplicated primary THA via a direct anterior approach with the short stem Taperloc Microplasty® (Zimmer Biomet, Warsaw, IN) implant between 2011 and 2015 were mailed a pain drawing questionnaire. Radiographs were reviewed at 1-year minimum to determine cortical thickness change from immediate post-op. Thigh pain was compared to DFCH as well as patient demographics and femoral stem size. 293 patients were included in the studyBackground
Methods
Femoral bone preservation is an important consideration in total hip replacement for those patients expected to outlive the success of their primary procedure. A clinical study was initiated to assess the performance of a new, ultra-short, cementless
Children suffering from primary bone cancer necessitating resection of growth plates, may suffer progressive leg length discrepancy, which can be attenuated with extendable prostheses. A serious complication is catastrophic implant failure. Over time, bone will remodel, altering the stress pattern in the implant. By using finite element analysis we can model different bone remodeling conditions to ascertain the effect that this will have on stress distribution and magnitude. A finite element analysis was performed. Simplified computer generated models were designed of a cemented femoral Stanmore growing massive endoprosthesis. Three scenarios were designed, modelled on post-operative radiographs. Scenario 1 had a gap between the end of the femur and the implant collar, scenario 2 had no gap, but with no bone attachment into the collar, and scenario 3 had growth of the bone over the length of the collar with attachment. Physiological loading conditions were applied. The resultant stress in the implant for each scenario was measured, and compared to the strength of the material. Peak stresses were recorded at the stem-collar junction. The maximum stress recorded in the implant in scenario 1 was 3104.2Mpa, compared to 1054.4Mpa in scenario 2, and 321.2Mpa in scenario 3. Both accurate reduction and bone growth with attachment to the stem of a massive endoprosthesis will greatly reduce the resultant stress in the implant under loading conditions. The load is redistributed throughout the length of the bone. This may help to prevent catastrophic failure in the implant under loading conditions. Further investigations of patient findings are needed to ensure the model findings are verified.Background
Conclusions
Anterior positioning of a cephomedullary nail in the distal femur occurs in up to 88% of cases. This is considered to occur because of a mismatch between the radius of curvature of the femur and that of available implants. The hypothesis for this study was that the relative thicknesses of the cortices of the femur (referenced off the linea aspera) change with age and determine the final position of intramedullary implants. This study used the data from CT scans undertaken as part of routine clinical practice in 919 patients with intact left femora (median age 66 years, 484 male and 435 female). The linea aspera and transverse intervals were plotted on a template femur between 25% – 60% femoral bone length (5% increments) and mapped automatically to all individual femora in the database with measurements taken in the plane of the linea aspera. The linea aspera was found to be internally rotated as compared to the sagittal plane referenced off the posterior femoral condyles. An age related change in the posterior/anterior cortical thickness ratio was demonstrated. The >80 year old cohort shows a significantly disproportional posterior/anterior ratio increase of 70.0% from 25–50% bone length as compared to 48.1% for the <40 year old cohort (p<0.05). This study has shown that assessment in the sagittal plane may be inaccurate because of rotational changes in the linea aspera. The centering influence of the corticies is lost with age with a relative thinning of the anterior cortex and thickening of the posterior cortex moving distally in the femur. This has a direct influence on the positioning of intramedullary implants explaining the preponderance of anterior malpositioning of intramedullary implants in the elderly.
The purpose of this study was to measure the variation of three different lines for femoral rotational alignment to show the possible difference and check the so far used values in manual instrumentation technique.
The software calculated the position of the lines and the 3-dimensional ankle between the lines. Intraoperative snapshots were taken to postoperative data analysis of the numeric data.
Introduction. Conventional implant designs in total knee arthroplasty (TKA) are based on metal on UHMWPE bearing couples. Although this procedure is quite successful, early loosening is still a matter of concern. One of the causes for early failure is stress shielding, leading to loss of bone stock, periprosthetic bone fractures and eventually aseptic loosening of the component. The introduction of a polyetheretherketone (PEEK) on UHMWPE bearing couple could address this problem. With mechanical properties more similar to distal (cortical) bone it could allow stresses to be distributed more naturally in the distal femur. A potential adverse effect, however, is that the femoral component and the underlying cement mantle may be at risk of fracturing. Therefore, we analyzed the effect of a PEEK-Optima® femoral component on stress shielding and the integrity of the component and cement mantle, compared to a conventional Cobalt-Chromium (CoCr) alloy implant. Methods. We created a Finite Element (FE) model of a reconstructed knee in gait, based on the ISO-14243-1 standard. The model consisted of an existing cemented cruciate retaining TKA design implanted on a distal femur, and a tibial load applicator, which together with the bone cement layer and the tibial implant is referred to as the tibial construct. The knee flexion angle was controlled by the femoral construct, consisting of the
The effects of metal ion release and wear particle debris in metal-on-metal articulation warrants an investigation of alternative material, like ceramics, as a low-wear bearing couple [1]. Short-stem resurfacing
Current estimates of periprosthetic fracture risk associated with
We created TiO. 2. nanotubes (TNTs) on the surface of titanium (Ti) implants with subsequential loading with gentamicin and chitosan, acting as a control release agent, by electrophoretic deposition (EPD). We hypothesized
Periprosthetic femur fracture (PPF) are heterogeneous, complex, and thought to be increasingly prevalent. The aims were to evaluate PPF prevalence, casemix, management, and outcomes. This nationwide study included all PPF patients aged >50 years from 16 Scottish hospitals in 2019. Variables included: demographics; implant and fracture factors; management factors, and outcomes. There were 332 patients, mean age 79.5 years, and 220/332 (66.3%) were female. One-third (37.3%) were ASA1-2 and two-thirds (62.3%) were ASA3+, 91.0% were from home/sheltered housing, and median Clinical Frailty Score was 4.0 (IQR 3.0). Acute medical issues featured in 87/332 (26.2%) and 19/332 (5.7%) had associated injuries. There were 251/332 (75.6%) associated with a proximal