Introduction. The FitBone lengthening nail (Orthofix UK) is an intramedullary device licensed for the lengthening of long bones in adults in the UK. It contains a motor powered by electricity transmitted via an induction
Reconstruction of the anterior cruciate ligament (ACL) allows to restore stability of the knee, in order to facilitate the return to activity (RTA). Although it is understood that the tendon autograft undergoes a ligamentous transformation postoperatively, knowledge about longitudinal microstructural differences in tissue integrity between types of tendon autografts (ie, hamstring vs. patella) remains limited. Diffusion tensor imaging (DTI) has emerged as an objective biomarker to characterize the ligamentization process of the tendon autograft following surgical reconstruction. One major limitation to its use is the need for a pre-injury baseline MRI to compare recovery of the graft, and inform RTA. Here, we explore the relationship for DTI biomarkers (fractional anisotropy, FA) between knees bilaterally, in healthy participants, with the hypothesis that agreement within a patient's knees may support the use of the contralateral knee as a reference to monitor recovery of the tendon autograft, and inform RTA. Fifteen participants with no previous history of knee injuries were enrolled in this study (age, 26.7 +/− 4.4 years; M/F, 7/8). All images were acquired on a 3T Prisma Siemens scanner using a secured flexible 18-channel
Surgical navigation systems enable surgeons to carry out surgical interventions more accurately and less invasively, by tracking the surgical instruments inside human body with respect to the target anatomy. Currently, optical tracking (OPT) is the gold standard in surgical instrument tracking because of its sub-millimeter accuracy, but is constrained by direct line of sight (LOS) between camera sensors and active or passive markers. Electromagnetic tracking (EMT) is an alternative without the requirement of LOS, but subject to environmental ferromagnetic distortion. An intuitive idea is to integrate respective strengths of them to overcome respective weakness and we aim to develop a tightly-coupled method emphasising the interactive coupled sensor fusion from magnetic and optical tracking data. In order to get real-time position and orientation of surgical instruments in the surgical field, we developed a new tracking system, which is aiming to overcome the constraints of line-of-sight and paired-point interference in surgical environment. The primary contribution of this study is that the LOS and point correspondence problems can be mitigated using the initial measurements of EMT, and in turn the OPT result can provide initial value for non-linear iterative solver of EMT sensing module. We developed an integrated optical and electromagnetic tracker comprised of custom multiple infrared cameras, optical marker, field generator and sensing
The purpose of this paper is to investigate the relative contribution of each component in the ultimate strength and stiffness of the Evolgate (Citieffe), which is presently a widely used fixation device in DGST ACL reconstruction. The three components of the Evolgate were tested using fresh frozen animal tissue stored at −20° Celsius. Common extensor tendons were harvested from 20-month-old bovine forelimbs. Twenty-four tests were performed for each of the following configurations: six tests using Evolgate complete, six tests using screw alone, six tests using screw and washer and six tests using screw and
Introduction & Aims. In other medical fields, smart implantable devices are enabling decentralised monitoring of patients and early detection of disease. Despite research-focused smart orthopaedic implants dating back to the 1980s, such implants have not been adopted into regular clinical practice. The hardware footprint and commercial cost of components for sensing, powering, processing, and communicating are too large for mass-market use. However, a low-cost, minimal-modification solution that could detect loosening and infection would have considerable benefits for both patients and healthcare providers. This proof-of-concept study aimed to determine if loosening/infection data could be monitored with only two components inside an implant: a single-element sensor and simple communication element. Methods. The sensor and
The modified Hedgehog technique was previously used to reattach pure chondral shear-off fragments in the pediatric knee. In the modified Hedgehog technique, the calcified side of chondral fragments is multiple times incised and trimmed obliquely for an interlocking fit in the defect site. Fibrin glue with or without sutures is subsequently applied to fix the fragment to the defect. This preliminary report further elucidates the potential of the technique by evaluation of its application in young adults using patient reported outcome measures (PROMs) and high-field Magnetic Resonance Imaging (MRI) as outcome measures. Three patients with a femoral cartilage defect (2 medial, 1 lateral), and a concomitant pure chondral corpus liberum were operatively treated by the modified Hedgehog technique. Age at surgery ranged from 20.6–21.2 years, defect size ranged from 3.8–6.0 cm2. Patients were evaluated at three months and one year after surgery by PROMs and 7.0T MRI. PROMs included the Internation Knee Documentation (IKDC), Knee Injury and Osteoarthritis Outcome Score (KOOS) and Visual Analog Scale (VAS) questionnaires. 7.0T MRI (Magnetom, Siemens Healthcare, Erlangen, Germany) using a 28-channel proton knee
Introduction: Immature individuals with known neuromotor disorders are subject to the development of scoliosis; therefore a subclinical dysfunction or anatomic abnormality of the neurologic system has been hypothesized as a causative factor of adolescent idiopathic scoliosis. In previous clinical studies, authors have tested a wide range of functions, including proprioception, postural equilibrium, oculovestibular complex and vibratory sensation and multiple techniques, including electronystagmography, electroencephalography and electromyography in select scoliotic patient populations. Material and Methods: The present study was designed to investigate the motor system of scoliotic patients with magnetic stimulation. female patients 12 to 14 years old (mean age=13.36) with right idiopathic scoliosis (curves:20–40°) (study group) and 20 normal subjects in the same age group (mean age=12.6) (control group) entered the study. Magnetic stimulation of the brain was performed with a figure of eight
The vast majority of total hip replacements (THR) implanted today enable modularity by means of a tapered junction; based on the Morse taper design introduced for cutting tools in the 19. th. Century . 1. Morse-type tapers at the head-stem junction provide many benefits, key for a successful surgical outcome such as wider component selection and restoration of better biomechanics . 2. However, moving from mono-block to modular designs has not been without its issues. Fluid ingress and motion at the interface has led to a complex multifactorial degradation mechanism better known as fretting-corrosion . 3. Fretting-corrosion products created at the junction are commonly associated with adverse local tissue reactions . 4. . There is a wide variation in the taper junction of THR differing quite significantly from Morse's original design. Performance of the taper junction has been found to vary with different designs . 5,6. However, there is still a lack of common understanding of what design inputs makes a ‘good’ modular taper interface. The aim of this study was to better understand the links between implant design and fretting-corrosion initially focussing on the role of angular mismatch between male and female taper. A combination of experimental approaches with the aid of computational models to assist understanding has been adopted. A more descriptive understanding between taper design, engagement, motion and fretting-corrosion will be developed. Three different sample designs were created to represent the maximum range of possible angular mismatches seen in clinically available THR modular tapers (Matched: 0.020 ±0.002 °, Proximal: 0.127 ±0.016 °, Distal: −0.090 ±0.002 °). Head-stem components were assembled at 2 kN. Motion and fretting-corrosion at the interface was simulated under incremental uniaxial sinusoidal loading between 0.5–4 kN at 8 intervals of 600 cycles. The different types of motions at the interface was measured using a developed inductance circuit composed of four sensing
Regulatory bodies impose stringent pre-market controls to certify the safety and compatibility of medical devices. However, internationally recognized standard tests may be expensive, time consuming and challenging for orthopedic implants because of many possible sizes and configurations. In addition, cost and time of standard testing may endanger the feasibility of custom-device production obtained through innovative manufacturing technologies like 3d printing. Modeling and simulation (M&S) tools could be used by manufactures and at point-of-care to improve design confidence and reliability, accelerate design cycles and processes, and optimize the amount of physical testing to be conducted. We propose an integrated cloud platform to perform in silico testing for orthopedic devices, assessing mechanical safety and electromagnetic compatibility, in line with recognized standards and regulatory guidelines. The . InSilicoTrials.com. platform contains two M&S tools for orthopedic devices: CONSELF and NuMRis. CONSELF (. conself.com. ) uses Salome-Meca 2017 to compute static implant stresses and strains on metallic orthopedic devices, following the requirements and considerations of ASTM F2996-20 for non-modular hip femoral stems and ASTM F3161-16 for total knee femoral components. Simulation results were consistent with those reported in the two standards. NuMRis (. numris.insilicomri.com. ) uses ANSYS HFSS and ANSYS Mechanical 2019R3 to compute radio-frequency energy absorption and induced heating in 1.5T and 3T MRI
Background: To quantify the distraction forces required to lengthen a standard subcutaneous domino linked two rod construct. This was a seminal piece of work as part of a project to design a magnetic
Tungsten has been increasing in demand for use in manufacturing and recently, medical devices, as it imparts flexibility, strength, and conductance of metal alloys. Given the surge in tungsten use, our population may be subjected to elevated exposures. For instance, embolism
Purpose. To develop a low complexity highly-automated multimodal approach to segment vertebral structure and quantify mixed osteolytic/osteoblastic metastases in the rat spine using a combination of CT and MR imaging. We hypothesize that semi-automated multimodal analysis applied to 3D CT and MRI reconstructions will yield accurate and repeatable quantification of whole vertebrae affected by mixed metastases. Method. Mixed spinal metastases were developed via intra-cardiac injection of canine Ace-1 luciferase transfected prostate cancer cells in a 3 week old rnu/rnu rat. Two sequential MR images of the L1-L3 vertebral motion segments were acquired using a 1H quadrature customized birdcage
As part of a 10 year follow-up study investigating the relationship between MRI-diagnosed disc disease and low back pain (LBP), a comparison of MRI image acquisition protocols was conducted. The aim was to establish whether the modern protocol produced improved diagnoses of lumbar disc disease. This is of significance when attempting to determine links between lumbar disc disease and LBP. The proposed hypothesis was that little difference in the pathology reported of MRI lumbar spines between the surface
Introduction. Sensoric soft tissue balancing in performing TKA is an upcoming topic to improve the results in TKA. A well balanced knee is working more proper together with the muscular stabilizing structures. Dynamic ligament balancing (DLB)R give us the opportunity to check the balance of the ligaments at the beginning and the end of the surgery before implanting the definitive prosthesis. It is a platform independent, single-use device, which can be combined with all common types of knee prosthesis. Materials and Methods. DLBR consists of a set of 10 different sizes of baseplates including a spring
Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing. A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments.Aims
Methods
Here we used a mature seven-day biofilm model of Mature biofilms of Aims
Methods
Non-invasive, in vivo measurement of the three-dimensional (3-D) motion of the tibiofemoral joint is essential for the study of the biomechanics and functional assessment of the knee. Real-time magnetic resonance imaging (MRI) techniques enable the measurement of dynamic motions of the knee with satisfactory image quality and free of radiation exposures but are limited to planar motions in selected slice(s). The aims of the current study were to propose a slice-to-volume registration (SVR) method in conjunction with dual-slice, real-time MRI for measuring 3-D tibiofemoral motion; and to evaluate its repeatability during passive knee flexion. Eight healthy young adults participated in the current study, giving informed written consent as approved by the Institutional Research Board. A 3-T MRI system (Verio, Siemens, Erlangen, Germany) incorporated with a neck matrix
Occult (clinical) injuries represent 15% of all scaphoid fractures, posing significant challenges to the clinician. MRI has been suggested as the gold standard for diagnosis, but remains expensive, time-consuming, and is in high demand. Conventional management with immobilization and serial radiography typically results in multiple follow-up attendances to clinic, radiation exposure, and delays return to work. Suboptimal management can result in significant disability and, frequently, litigation. We present a service evaluation report following the introduction of a quality-improvement themed, streamlined, clinical scaphoid pathway. Patients are offered a removable wrist splint with verbal and written instructions to remove it two weeks following injury, for self-assessment. The persistence of pain is the patient’s guide to ‘opt-in’ and to self-refer for a follow-up appointment with a senior emergency physician. On confirmation of ongoing signs of clinical scaphoid injury, an urgent outpatient ‘fast’-wrist protocol MRI scan is ordered, with instructions to maintain wrist immobilization. Patients with positive scan results are referred for specialist orthopaedic assessment via a virtual fracture clinic.Aims
Methods
In order to release the contracture band completely without damaging normal tissues (such as the sciatic nerve) in the surgical treatment of gluteal muscle contracture (GMC), we tried to display the relationship between normal tissue and contracture bands by magnetic resonance neurography (MRN) images, and to predesign a minimally invasive surgery based on the MRN images in advance. A total of 30 patients (60 hips) were included in this study. MRN scans of the pelvis were performed before surgery. The contracture band shape and external rotation angle (ERA) of the proximal femur were also analyzed. Then, the minimally invasive GMC releasing surgery was performed based on the images and measurements, and during the operation, incision lengths, surgery duration, intraoperative bleeding, and complications were recorded; the time of the first postoperative off-bed activity was also recorded. Furthermore, the patients’ clinical functions were evaluated by means of Hip Outcome Score (HOS) and Ye et al’s objective assessments, respectively.Aims
Methods
Eccentric reductions may become concentric through femoral head ‘docking’ (FHD) following closed reduction (CR) for developmental dysplasia of the hip (DDH). However, changes regarding position and morphology through FHD are not well understood. We aimed to assess these changes using serial MRI. We reviewed 103 patients with DDH successfully treated by CR and spica casting in a single institution between January 2016 and December 2020. MRI was routinely performed immediately after CR and at the end of each cast. Using MRI, we described the labrum-acetabular cartilage complex (LACC) morphology, and measured the femoral head to triradiate cartilage distance (FTD) on the midcoronal section. A total of 13 hips with initial complete reduction (i.e. FTD < 1 mm) and ten hips with incomplete MRI follow-up were excluded. A total of 86 patients (92 hips) with a FTD > 1 mm were included in the analysis.Aims
Methods