header advert
Results 1 - 20 of 272
Results per page:
Bone & Joint Research
Vol. 12, Issue 5 | Pages 311 - 312
5 May 2023
Xu C Liu Y

Cite this article: Bone Joint Res 2023;12(5):311–312.


Bone & Joint Research
Vol. 11, Issue 12 | Pages 881 - 889
1 Dec 2022
Gómez-Barrena E Padilla-Eguiluz N López-Marfil M Ruiz de la Reina R

Aims. Successful cell therapy in hip osteonecrosis (ON) may help to avoid ON progression or total hip arthroplasty (THA), but the achieved bone regeneration is unclear. The aim of this study was to evaluate amount and location of bone regeneration obtained after surgical injection of expanded autologous mesenchymal stromal cells from the bone marrow (BM-hMSCs). Methods. A total of 20 patients with small and medium-size symptomatic stage II femoral head ON treated with 140 million BM-hMSCs through percutaneous forage in the EudraCT 2012-002010-39 clinical trial were retrospectively evaluated through preoperative and postoperative (three and 12 months) MRI. Then, 3D reconstruction of the original lesion and the observed postoperative residual damage after bone regeneration were analyzed and compared per group based on treatment efficacy. Results. The mean preoperative lesion volume was 18.7% (SD 10.2%) of the femoral head. This reduced to 11.6% (SD 7.5%) after three months (p = 0.015) and 3.7% (SD 3%) after one year (p < 0.001). Bone regeneration in healed cases represented a mean 81.2% (SD 13.8%) of the initial lesion volume at one year. Non-healed cases (n = 1 stage progression; n = 3 THAs) still showed bone regeneration but this did not effectively decrease the ON volume. A lesion size under mean 10% (SD 6%) of the femoral head at three months predicted no ON stage progression at one year. Regeneration in the lateral femoral head (C2 under Japanese Investigation Committee (JCI) classification) and in the central and posterior regions of the head was predominant in cases without ON progression. Conclusion. Bone regeneration was observed in osteonecrotic femoral heads three months after expanded autologous BM-hMSC injection, and the volume and location of regeneration indicated the success of the therapy. Cite this article: Bone Joint Res 2022;11(12):881–889


Bone & Joint Research
Vol. 10, Issue 7 | Pages 411 - 424
14 Jul 2021
Zhao D Ren B Wang H Zhang X Yu M Cheng L Sang Y Cao S Thieringer FM Zhang D Wan Y Liu C

Aims. The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration. Methods. IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively. Results. DT plus 30 ng/ml of IL4 (DT + 30 IL4) from day 3 to day 7 significantly (p < 0.01) enhanced macrophage type 2 polarization and BMMSC osteogenesis compared with the other groups. Local injection of IL4 enhanced new bone formation surrounding the DT. Conclusion. DT + 30 IL4 may switch macrophage polarization at the appropriate timepoints to promote bone regeneration. Cite this article: Bone Joint Res 2021;10(7):411–424


Bone & Joint Research
Vol. 6, Issue 6 | Pages 366 - 375
1 Jun 2017
Neves N Linhares D Costa G Ribeiro CC Barbosa MA

Objectives. This systematic review aimed to assess the in vivo and clinical effect of strontium (Sr)-enriched biomaterials in bone formation and/or remodelling. Methods. A systematic search was performed in Pubmed, followed by a two-step selection process. We included in vivo original studies on Sr-containing biomaterials used for bone support or regeneration, comparing at least two groups that only differ in Sr addition in the experimental group. Results. A total of 572 references were retrieved and 27 were included. Animal models were used in 26 articles, and one article described a human study. Osteoporotic models were included in 11 papers. All articles showed similar or increased effect of Sr in bone formation and/or regeneration, in both healthy and osteoporotic models. No study found a decreased effect. Adverse effects were assessed in 17 articles, 13 on local and four on systemic adverse effects. From these, only one reported a systemic impact from Sr addition. Data on gene and/or protein expression were available from seven studies. Conclusions. This review showed the safety and effectiveness of Sr-enriched biomaterials for stimulating bone formation and remodelling in animal models. The effect seems to increase over time and is impacted by the concentration used. However, included studies present a wide range of study methods. Future work should focus on consistent models and guidelines when developing a future clinical application of this element. Cite this article: N. Neves, D. Linhares, G. Costa, C. C. Ribeiro, M. A. Barbosa. In vivo and clinical application of strontium-enriched biomaterials for bone regeneration: A systematic review. Bone Joint Res 2017;6:366–375. DOI: 10.1302/2046-3758.66.BJR-2016-0311.R1


Bone & Joint Research
Vol. 13, Issue 7 | Pages 342 - 352
9 Jul 2024
Cheng J Jhan S Chen P Hsu S Wang C Moya D Wu Y Huang C Chou W Wu K

Aims. To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration. Methods. The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm. 2. , 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens. Results. In the histopathological analysis, the macro-morphological grading scale showed a significant increase, while the histological score and cartilage repair scale of ESWT exhibited a significant decrease compared to OCD at the 8- and 12-week timepoints. At the 12-week follow-up, ESWT exhibited a significant improvement in the volume of damaged bone compared to OCD. Furthermore, immunohistochemistry analysis revealed a significant decrease in type I collagen and a significant increase in type II collagen within the newly formed hyaline cartilage following ESWT, compared to OCD. Finally, SRY-box transcription factor 9 (SOX9), aggrecan, and TGF-β, BMP-2, -3, -4, -5, and -7 were significantly higher in ESWT than in OCD at 12 weeks. Conclusion. ESWT promoted the effect of TGF-β/BMPs, thereby modulating the production of extracellular matrix proteins and transcription factor involved in the regeneration of articular cartilage and subchondral bone in an OCD rat model. Cite this article: Bone Joint Res 2024;13(7):342–352


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 159 - 160
1 Mar 2006
Thorey F Floerkemeier T Hurschler C Schmeling A Raschke M Windhagen H
Full Access

Introduction: There is a need for new non-invasive, predictable and quantifiable techniques to assess the process of fracture healing and remodelling in bone. There are several methods to monitor the bone healing in-vivo. But these methods either fail as quantitative predictors of the healing process (X-ray) or exhibit complicated and expensive measurement principles. Some known in-vivo stiffness measurement methods have several disadvantages including the risk of bone malalignment. Therefore we compared ex-vivo torsional strength of bone with in-vivo torsional stiffness under minimal load in two animal model of distraction osteogenesis. Additionally the device was tested in an ex-vivo model. Methods: An external fixator was combined with a rotating double half-ring. The measurement device was fixed to the half-ring during measurements. It was equipped with a linear variable differential transducer, a load cell, and a stepper motor. During measurements the two parts of the half-ring were rotated against each other and the load and displacement were recorded. The slope coefficient after performing a linear regression between data points of moment and displacement curve was defined as stiffness. Afterwards all models were tested in a material testing system as gold standard. This was tested in an in-vivo animal study of tibial distraction (minipigs time of consolidation 10 days/sheeps time of consolidation 50 days). Results: Between in-vivo initial torsional stiffness and torsional strength in minipigs we found a highly significant (p=0.001) coefficient of determination of 0.82, but we found only a poor correlation (p> 0.05) in sheeps. However, the results of the ex-vivo model showed a high precision and accuracy. Discussion: The results of this study suggest that the bone regenerate strength of healing bones can be assessed in-vivo by the presented inital stiffness measurement method in the beginning of an early stage of healing as shown in minipigs. But at the end of the healing period the correlation of strength and stiffness leveled off. There is a similar model showing an excellent correlation, that agree with our data. They explained the weakening of the correlation at the end of healing by a transformation of early bone to lamellar bone after a 2/3 consolidation. In summary, the presented device could be a reliable future tool to monitor the healing progress in patients with bone malalignement or fractures in the beginning of the healing period


Bone & Joint Research
Vol. 4, Issue 5 | Pages 70 - 77
1 May 2015
Gupta A Liberati TA Verhulst SJ Main BJ Roberts MH Potty AGR Pylawka TK El-Amin III SF

Objectives

The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration.

Methods

A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 86 - 86
1 Dec 2020
Bal Z Kaito T Ishiguro H Okada R Kanayama S Kushioka J Kodama J Chijimatsu R Korkusuz P Dede EÇ Gizer M Yoshikawa H Korkusuz F
Full Access

To prevent the reported side effects of rhBMP-2, an important cytokine with bone forming capacity, the sustained release of rhBMP-2 is highly important. Synthetic copolymer polylactic acid-polyethylene glycol (PLA-PEG) is already shown to be a good carrier for rhBMP-2. The nano-sized hydroxyapatite (nHAp) is mentioned to be superior to conventional hydroxyapatite due to its decreased particle size which increases the surface area, so protein-cell adhesion and mechanical properties concomitantly. In the literature no study is reported with PLA-PEG / rhBMP-2/ nHAp for bone regeneration. In this study, we assessed the controlled release profile of rhBMP-2 from the novel biomaterial of PLA-PEG / rhBMP-2 / nHAp in vitro and evaluated the bone forming capacity of the composite in rat posterolateral spinal fusion (PSF) model in vivo. Composites were prepared via addition of rhBMP-2 (0µg, 3µg or 10µg) and nHAp (12.5mg) into PLA-PEG (5mg) + acetone solution and shaping. The release kinetics of the cytokine from the composites with 5µg BMP-2 was investigated by ELISA. The effect of nHAp and nHAp with rhBMP-2 on cell differentiation (rat BMSC cells, passage 3) was tested with ALP staining. In vivo bone formation was investigated by PSF on L4-L5 in a total of 36 male SD rats and weekly µCT results and histology at 8. th. weeks post operation were used for assessment of the bone formation. All animal experiments was approved by the institutional review board confirming to the laws and regulations of Japan. The composite showed an initial burst release in the first 24 hours (51.7% of the total released rhBMP-2), but the release was continued for the following 21 days. Thus, the sustained release of rhBMP-2 from the composite was verified. ALP staining results showed nHAp with rhBMP-2 contributed better on differentiation than nHAp itself. µCT and histology demonstrated that spinal fusion was achieved either one or both transverse processes in almost all BMP 3µg and BMP 10µg treated animals. On the contrary, only small or no bone formation was observed in the BMP0µg group (bilateral non-union / unilateral fusion/ bilateral fusion, BMP0µg group; 9/0/0, BMP3µg group; 1/0/11, BMP10µg group; 0/1/11). We developed a new technology for bone regeneration with BMP-2/PLA-PEG/nHAp composite. With this composite, the required dose of BMP-2 for spinal fusion in rats (10µg) was decreased to 1/3 (3µg) which can be explained by the superior properties of nano-sized hydroxyapatite and by the achievement of sustainable release of rhBMP-2 from the composite. This study is supported by Japanese Society of the Promotion of Science (JSPS) and Scientific and Technological Research Council of Turkey (TUBITAK). [Project No: 215S834]


Bone & Joint Research
Vol. 4, Issue 10 | Pages 170 - 175
1 Oct 2015
Sandberg OH Aspenberg P

Objectives

Healing in cancellous metaphyseal bone might be different from midshaft fracture healing due to different access to mesenchymal stem cells, and because metaphyseal bone often heals without a cartilaginous phase. Inflammation plays an important role in the healing of a shaft fracture, but if metaphyseal injury is different, it is important to clarify if the role of inflammation is also different. The biology of fracture healing is also influenced by the degree of mechanical stability. It is unclear if inflammation interacts with stability-related factors.

Methods

We investigated the role of inflammation in three different models: a metaphyseal screw pull-out, a shaft fracture with unstable nailing (IM-nail) and a stable external fixation (ExFix) model. For each, half of the animals received dexamethasone to reduce inflammation, and half received control injections. Mechanical and morphometric evaluation was used.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 34 - 34
1 Mar 2006
Wellmann M Witte F Nellesen J Crostack H Floerkemeyer T Windhagen H
Full Access

Introduction: The long consolidation phase of patients undergoing distraction osteogenesis (DO) causes a high risk of side effects and contributes to high costs. Thus, the development and evaluation of treatments that accelerate the bone consolidation process is of great interest. Evidence suggests that recombinant human bone morphogenetic protein 2 (rhBMP-2) increases the mechanical integrity of the callus. However, the potential benefits of rhBMP-2 on trabecular microarchitecture during DO have not been investigated up to date. In this study the regenerate microarchitecture was assessed using 3D micro-computed tomography (CT).

Methods: Mid-diaphyseal osteotomies were created in the right limb of twenty-four skeletally mature sheep, which were stabilized with an external fixator. After a latency period of 4 days, the tibiae were distracted at a rate of 1.25 mm daily over a period of 20 days. The operated limbs were randomly assigned to three treatment groups and one control group: (A) triple injection of rhBMP-2/NaCl, (B) single injection of rhBMP-2/Hydroxylapatite, and (C) single injection of buffer/Hydroxylapatit, (D) no injection. Groups A and C were injected at day 27. Group B was injected on days 3, 10 and 17. The animals were sacrificed after 74 days. The tibiae were analyzed by CT and for bone volume/total volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th.), trabecular separation (Tb.Sp.) and Connectivity. The BV/TV was maesured for the total volume of the distraction zone (BV/TVtotal) respectively in a subvolume with emphasize on the cortical bone region (BV/TVcortical). All other microarchitecture parameters were measured in the cortical weighted subvolume.

Results: The stereologic evaluation revealed a significant higher BV/TVcortical, Tb.N and Connectivity in the triple rhBMP-2 injected group A than in the control (D). Furthermore, the Tb.Sp. in group A was significant lower than in group D. The single injections of rhBMP-2/carrier in group B showed a significant higher BV/TVcortical, Tb.N and Connectivity than the control (D). Although the BV/TVcortical was increased in group A and B, there was no significant difference in BV/TV total between the rhBMP-2 treated groups (A, B) and the control (D).

Discussion: In this DO model a triple injection of rhBMP-2 has been demonstrated to induce significant changes in trabecular microarchitecture. RhBMP-2 does not increase the total amount of newly formed bone, but it enhances the formation of the corticalis. The microstructural changes in the cortical volume: increase of Tb.N and Connectivity, decrease of Tb.Sp., are discussed to be biomechanically highly relevant. This study suggests that rhBMP-2 optimizes the trabecular microarchitecture, which might explain the advanced mechanical integrity of newly formed bone under rhBMP-2 treatment.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 4 - 4
1 Dec 2020
Tashmetov E Tuleubaev B Saginova D Koshanova A Rustambek I
Full Access

Introduction

Cancellous and cortical bone used as a delivery vehicle for antibiotics. Recent studies with cancellous bone as an antibiotic carrier in vitro and in vivo showed high initial peak concentrations of antibiotics in the surrounding medium. However, high concentrations of antibiotics can substantially reduce osteoblast replication and even cause cell death.

Objectives

To determine whether impregnation with gentamycine impair the incorporation of bone allografts, as compared to allografts without antibiotic.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 140 - 140
2 Jan 2024
Banfi A
Full Access

Bone regeneration is an area of acute medical need, but its clinical success is hampered by the need to ensure rapid vascularization of osteogenic grafts. Vascular Endothelial Growth Factor (VEGF) is the master regulator of vascular growth and during bone development angiogenesis and osteogenesis are physiologically coupled through so-called angiocrine factors produced by blood vessels. However, how to exploit this process for therapeutic bone regeneration remains a challenge (1). Here we will describe recent work aiming at understanding the cross-talk between vascular growth and osteogenesis under conditions relevant for therapeutic bone regeneration. To this end we take advantage of a unique platform to generate controlled signalling microenvironments, by the covalent decoration of fibrin matrices with tunable doses and combinations of engineered growth factors. The combination of human osteoprogenitors and hydroxyapatite in these engineered fibrin matrices provides a controlled model to investigate how specific molecular signals regulate vascular invasion and bone formation in vivo. In particular, we found that:. 1). Controlling the distribution of VEGF protein in the microenvironment is key to recapitulate its physiologic function to couple angiogenesis and osteogenesis (2);. 2). Such coupling is exquisitely dependent on VEGF dose and on a delicate equilibrium between opposing effects. A narrow range of VEGF doses specifically activates Notch1 signaling in invading blood vessels, inducing a pro-osteogenic functional state called Type H endothelium, that promotes differentiation of surrounding mesenchymal progenitors. However, lower doses are ineffective and higher ones paradoxically inhibit both vascular invasion and bone formation (Figure 1) (3);. 3). Semaphorin3a (Sema3a) acts as a novel pro-osteogenic angiocrine factor downstream of VEGF and it mediates VEGF dose-dependent effects on both vascular invasion and osteogenic progenitor stimulation. In conclusion, vascularization of osteogenic grafts is not simply necessary in order to enable progenitor survival. Rather, blood vessels can actively stimulate bone regeneration in engineered grafts through specific molecular signals that can be harnessed for therapeutic purposes. Acknowledgements: This work was supported in part by the European Union Horizon 2020 Program (Grant agreement 874790 – cmRNAbone). For any figures and tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 117 - 117
2 Jan 2024
Hankenson K
Full Access

Growth factors produced by inflammatory cells and mesenchymal progenitors are required for proper bone regeneration. Signaling pathways activated downstream of these proteins work in concert and synergistically to drive osteoblast and/or chondrocyte differentiation. While dysregulation can result in abnormal healing, activating these pathways in the correct spatiotemporal context can enhance healing. Bone morphogenetic protein (BMP) signaling is well-recognized as being required for bone regeneration, and BMP is used clinically to enhance bone healing. However, it is imperative to develop new therapeutics that can be used alone or in conjunction with BMP to drive even more robust healing. Notch signaling is another highly conserved signaling pathway involved in tissue development and regeneration. Our work has explored Notch signaling during osteoblastogenesis and bone healing using both in vitro studies with human primary mesenchymal progenitor cells and in vivo studies with genetically modified mouse models. Notch signaling is required and sufficient for osteoblast differentiation, and is required for proper bone regeneration. Indeed, intact Notch signaling through the Jagged-1 ligand is required for BMP induced bone formation. On-going work continues to explore the intersection between BMP and Notch signaling, and determining cell types that express Notch receptors and Notch ligands during bone healing. Our long-term objective is to develop Notch signaling as a clinical therapy to repair bone


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 139 - 139
2 Jan 2024
van Griensven M
Full Access

Anatomically, bone consists of building blocks called osteons, which in turn comprise a central canal that contains nerves and blood vessels. This indicates that bone is a highly innervated and vascularized tissue. The function of vascularization in bone (development) is well-established: providing oxygen and nutrients that are necessary for the formation, maintenance, and healing. As a result, in the field of bone tissue engineering many research efforts take vascularization into account, focusing on engineering vascularized bone. In contrast, while bone anatomy indicates that the role of innervation in bone is equally important, the role of innervation in bone tissue engineering has often been disregarded. For many years, the role of innervation in bone was mostly clear in physiology, where innervation of a skeleton is responsible for sensing pain and other sensory stimuli. Unraveling its role on a cellular level is far more complex, yet more recent research efforts have unveiled that innervation has an influence on osteoblast and osteoclast activity. Such innervation activities have an important role in the regulation of bone homeostasis, stimulating bone formation and inhibiting resorption. Furthermore, due to their anatomical proximity, skeletal nerves and blood vessels interact and influence each other, which is also demonstrated by pathways cross-over and joint responses to stimuli. Besides those closely connected sytems, the immune system plays also a pivotal role in bone regeneration. Certain cytokines are important to attract osteogenic cells and (partially) inhibit bone resorption. Several leukocytes also play a role in the bone regeneration process. Overall, bone interacts with several systems. Aberrations in those systems affect the bone and are important to understand in the context of bone regeneration. This crosstalk has become more evident and is taken more into consideration. This leads to more complex tissue regeneration, but may recapitulate better physiological situations


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 107 - 107
11 Apr 2023
Lee E Ko J Park S Moon J Im G
Full Access

We found that adipose stem cells are poorly differentiated into bone and that their ability to differentiate into bone varies from cell line to cell line. The osteogenic differentiation ability of the adipose stem cell lines was distinguished through Alzarin Red Staining, and the cell lines that performed well and those that did not were subjected to RNA-seq analysis. The selected gene GSTT1 (glutathione S-transferase theta-1) gene is a member of a protein superfamily that catalyzes the conjugation of reduced glutathione to a variety of hydrophilic and hydrophobic compounds. The purpose of this study is to treat avascular necrosis and bone defect by improving bone regeneration with adipose stem cells introduced with a new GSTT1 gene related to osteogenic differentiation of adipose stem cells. In addition, the GSTT1 gene has the potential as a genetic marker that can select a specific cell line in the development of an adipose stem cell bone regeneration drug. Total RNA was extracted from each sample using the TRIzol reagent. Its concentration and purity were determined based on A260 and A260/A280, respectively, using a spectrophotometer. RNA sequencing library of each sample was prepared using a TruSeq RNA Library Prep Kit. RNA-seq experiments were performed for hADSCs. Cells were transfected with either GSTT1 at 100 nM or siControl (scramble control) by electroporation using a 1050 pulse voltage for 30 ms with 2 pulses using a 10 μl pipette tip. The purpose of this study is to discover genetic markers that can promote osteogenic differentiation of adipose stem cells (hADSCs) through mRNA-seq gene analysis. The selected GSTT1 gene was found to be associated with the enhancement of osteogenic differentiation of adipose stem cells. siRNA against GSTT1 reduced osteogenic differentiation of hADSCs, whereas GSTT1 overexpression enhanced osteogenic differentiation of hADSCs under osteogenic conditions. In this study, GSTT1 transgenic adipose stem cells could be used in regenerative medicine to improve bone differentiation. In addition, the GSTT1 gene has important significance as a marker for selecting adipose stem cells with potential for bone differentiation in the development of a therapeutic agent for bone regeneration cells


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 13 - 13
1 Nov 2021
Dubus M Rammal H Scomazzon L Baldit A Braux J Mauprivez C Kerdjoudj H
Full Access

Introduction and Objective. Alveolar bone resorption following tooth extraction or periodontal disease compromises the bone volume required to ensure the stability of an implant. Guided bone regeneration (GBR) is one of the most attractive technique for restoring oral bone defects, where an occlusive membrane is positioned over the bone graft material, providing space maintenance required to seclude soft tissue infiltration and to promote bone regeneration. However, bone regeneration is in many cases impeded by a lack of an adequate tissue vascularization and/or by bacterial contamination. Using simultaneous spray coating of interacting species (SSCIS) process, a bone inspired coating made of calcium phosphate-chitosan-hyaluronic acid was built on one side of a nanofibrous GBR collagen membrane in order to improve its biological properties. Materials and Methods. First, the physicochemical characterizations of the resulting hybrid coating were performed by scanning electron microscopy, X-ray photoelectron, infrared spectroscopies and high-resolution transmission electron microscopy. Then human mesenchymal stem cells (MSCs) and human monocytes were cultured on those membranes. Biocompatibility and bioactivity of the hybrid coated membrane were respectively evaluated through MSCs proliferation (WST-1 and DNA quantification) and visualization; and cytokine release by MSCs and monocytes (ELISA and endothelial cells recruitment). Antibacterial properties of the hybrid coating were then tested against S. aureus and P. aeruginosa, and through MSCs/bacteria interactions. Finally, a preclinical in vivo study was conducted on rat calvaria bone defect. The newly formed bone was characterized 8 weeks post implantation through μCT reconstructions, histological characterizations (Masson's Trichrome and Von Kossa stain), immunohistochemistry analysis and second harmonic generation. Biomechanical features of newly formed bone were determined. Results. The resulting hybrid coating of about 1 μm in thickness is composed of amorphous calcium phosphate and carbonated poorly crystalline hydroxyapatite, wrapped within chitosan/hyaluronic acid polysaccharide complex. Hybrid coated membrane possesses excellent bioactivity and capability of inducing an overwhelmingly positive response of MSCs and monocytes in favor of bone regeneration. Furthermore, the antibacterial experiments showed that the hybrid coating provides contact-killing properties by disturbing the cell wall integrity of Gram-positive and Gram-negative bacteria. Its combination with MSCs, able to release antibacterial agents and mediators of the innate immune response, constitutes an excellent strategy for fighting bacteria. A preclinical in vivo study was therefore conducted in rat calvaria bone defect. μCT reconstructions showed that hybrid coated membrane favored bone regeneration, as we observed a two-fold increase in bone volume / total volume ratios vs. uncoated membrane. The histological characterizations revealed the presence of mineralized collagen (Masson's Trichrome and Von Kossa stain), and immunohistochemistry analysis highlighted a bone vascularization at 8 weeks post-implantation. However, second harmonic generation analysis showed that the newly formed collagen was not fully organized. Despite a significant increase in the elastic modulus of the newly formed bone with hybrid coated membrane (vs. uncoated membrane), the obtained values were lower than those for native bone (approximately 3 times less). Conclusions. These significant data shed light on the regenerative potential of such bioinspired hybrid coating, providing a suitable environment for bone regeneration and vascularization, as well as an ideal strategy to prevent bone implant-associated infections


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 97 - 97
2 Jan 2024
Mohamed-Ahmed S Yassin M Rashad A Lie S Suliman S Espedal H Idris S Finne-Wistrand A Mustafa K Vindenes H Fristad I
Full Access

Mesenchymal stem cells (MSC) have been used for bone regenerative applications as an alternative approach to bone grafting. Selecting the appropriate source of MSC is vital for the success of this therapeutic approach. MSC can be obtained from various tissues, but the most used sources of MSC are Bone marrow (BMSC), followed by adipose tissue (ASC). A donor-matched comparison of these two sources of MSC ensures robust and reliable results. Despite the similarities in morphology and immunophenotype of donor-matched ASC and BMSC, differences existed in their proliferation and in vitro differentiation potential, particularly osteogenic differentiation that was superior for BMSC, compared to ASC. However, these differences were substantially influenced by donor variations. In vivo, although the upregulated expression of osteogenesis-related genes in both ASC and BMSC, more bone was regenerated in the calvarial defects treated with BMSC compared to ASC, especially during the initial period of healing. According to these findings, compared to ASC, BMSC may result in faster regeneration and healing, when used for bone regenerative applications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 125 - 125
2 Jan 2024
Mbuku R Sanchez C Evrard R Englebert A Manon J Henriet V Nolens G Duy K Schubert T Henrotin Y Cornu O
Full Access

To design slow resorption patient-specific bone graft whose properties of bone regeneration are increased by its geometry and composition and to assess it in in-vitro and in-vivo models. A graft composed by hydroxyapatite (HA) and β-TCP was designed as a cylinder with 3D gyroid porosities and 7 mm medullary space based on swine's anatomy. It was produced using a stereolithography 3D-printing machine (V6000, Prodways). Sterile bone grafts impregnated with or without a 10µg/mL porcine BMP-2 (pBMP-2) solution were implanted into porcine femurs in a bone loss model. Bone defect was bi-weekly evaluated by X-ray during 3 months. After sacrifice, microscanner and non-decalcified histology analysis were conducted on biopsies. Finally, osteoblasts were cultured inside the bone graft or in monolayer underneath the bone graft. Cell viability, proliferation, and gene expression were assessed after 7 and 14 days of cell culture (n=3 patients). 3D scaffolds were successfully manufactured with a composition of 80% HA and 20% β-TCP ±5% with indentation compressive strength of 4.14 MPa and bending strength of 11.8MPa. In vivo study showed that bone regeneration was highly improved in presence of pBMP-2. Micro-CT shows a filling of the gyroid sinuses of the implant (Figure 1). In vitro, the presence of BMP2 did not influence the viability of the osteoblasts and the mortality remained below 3%. After 7 days, the presence of BMP2 in the scaffold significantly increased by 85 and 65% the COL1A1 expression and by 8 and 33-fold the TNAP expression by osteoblasts in the monolayer or in the scaffold, respectively. This BMP2 effect was transient in monolayer and did not modify gene expression at day 14. BMP2-impregnated bone graft is a promising patient-personalized 3D-printed solution for bone defect regeneration, by promoting neighboring host cells recruitment and solid new bone formation. For any figures and tables, please contact the authors directly


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims. Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. Methods. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses. Results. At 12 weeks, the VBPC group significantly increased new bone formation volume compared with the other groups. Biomechanical testing demonstrated higher torque strength in the VBPC group. Notably, the haematoxylin and eosin, Masson’s trichrome, and immunohistochemistry-stained histological results revealed that VBPC promoted neovascularization and new bone formation in the spine fusion areas. Conclusion. The tissue-engineered VBPC showed great capability in promoting angiogenesis and osteogenesis in vivo. It may provide a novel approach to create a superior blood supply and nutritional environment to overcome the deficits of current artificial bone graft substitutes. Cite this article: Bone Joint Res 2023;12(12):722–733


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 86 - 86
2 Jan 2024
Balmayor E Joris V van Griensven M
Full Access

Bone tissue is known to possess an intrinsic regeneration potential. However, in cases of major injury, trauma, and disease, bone loss is present, and the regeneration potential of the tissue is often impaired. The process of bone regeneration relies on a complex interaction of molecules. MicroRNAs (miRNA) are small, non-coding RNAs that inhibit messenger RNAs (mRNA). One miRNA can inhibit several mRNAs and one mRNA can be inhibited by several miRNAs. Functionally, miRNAs regulate the entire proteome via the local inhibition of translation. In fact, miRNA modulation has been shown to be involved in several musculoskeletal diseases. 1. In those pathologies, they modulate the transcriptional activity of mRNAs important for differentiation, tissue-specific activity, extracellular matrix production, etc. Because of their function in inhibiting translation, miRNAs are being researched in many diseases and are already being used for interventional treatment. 2. Bone tissue and its related conditions have been widely investigated up to this day. 1,3. This talk will focus on the relevancy of miRNAs to bone tissue, its homeostasis, and disease. After, examples will be given of how miRNAs can be used in bone regeneration and diseases such as osteoporosis and osteosarcoma. The use of miRNAs in both, detection and therapy will be discussed