Advertisement for orthosearch.org.uk
Results 1 - 20 of 173
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 126 - 126
2 Jan 2024
Escudero-Duch C Serrano-Yamba R Sánchez-Casanova S Falguera-Uceda M Yus C Lerma-Juárez M Arruebo M Vilaboa N
Full Access

In this work, we combined tissue engineering and gene therapy technologies to develop a therapeutic platform for bone regeneration. We have developed photothermal fibrin-based hydrogels that incorporate degradable CuS nanoparticles (CuSNP) which transduce incident near-infrared (NIR) light into heat. A heat-activated and rapamycin-dependent transgene expression system was incorporated into mesenchymal stem cells to conditionally control the production of bone morphogenetic protein 2 (BMP-2). Genetically engineered cells were entrapped in the photothermal hydrogels. In the presence of rapamycin, photoinduced mild hyperthermia induced the release of BMP-2 from the NIR responsive cell constructs. Transcriptome analysis of BMP-2 expressing cells showed a signature of induced genes related to stem cell proliferation and angiogenesis. We next generated 4 mm diameter calvarial defects in the left parietal bone of immunocompetent mice. The defects were filled with NIR-responsive hydrogels entrapping cells that expressed BMP-2 under the control of the gene circuit. After one and eight days, rapamycin was administered intraperitoneally followed by irradiation with an NIR laser. Ten weeks after implantation, the animals were euthanized and samples from the bone defect zone were processed for histological analysis using Masson's trichrome staining and for immunohistochemistry analyses using specific CD31 and CD105 antibodies. Samples from mice that were only administered rapamycin or vehicle or that were only NIR-irradiated showed the persistence of fibrous tissue bridging the defect. In animals that were treated with rapamycin, NIR irradiation of implants resulted in the formation of new mineralized tissue with a high degree of vascularization, thus indicating the therapeutic potential of the approach. Acknowledgements: This research was supported by grants RTI2018-095159-B-I00 and PID2021-126325OB-I00 (MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”), by grant P2022/BMD- 7406 (Regional Government of Madrid). M.A.L-J. is the recipient of predoctoral fellowship PRE2019-090430 (MCIN/AEI/10.13039/501100011033)


Objectives. MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair. Fracture healing is a proliferative physiological process where the body facilitates the repair of a bone fracture. The aim of our study was to explore the effects of microRNA-186 (miR-186) on fracture healing through the bone morphogenetic protein (BMP) signalling pathway by binding to Smad family member 6 (SMAD6) in a mouse model of femoral fracture. Methods. Microarray analysis was adopted to identify the regulatory miR of SMAD6. 3D micro-CT was performed to assess the bone volume (BV), bone volume fraction (BVF, BV/TV), and bone mineral density (BMD), followed by a biomechanical test for maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. The positive expression of SMAD6 in fracture tissues was measured. Moreover, the miR-186 level, messenger RNA (mRNA) level, and protein levels of SMAD6, BMP-2, and BMP-7 were examined. Results. MicroRNA-186 was predicted to regulate SMAD6. Furthermore, SMAD6 was verified as a target gene of miR-186. Overexpressed miR-186 and SMAD6 silencing resulted in increased callus formation, BMD and BV/TV, as well as maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. In addition, the mRNA and protein levels of SMAD6 were decreased, while BMP-2 and BMP-7 levels were elevated in response to upregulated miR-186 and SMAD6 silencing. Conclusion. In conclusion, the study indicated that miR-186 could activate the BMP signalling pathway to promote fracture healing by inhibiting SMAD6 in a mouse model of femoral fracture. Cite this article: Bone Joint Res 2019;8:550–562


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 79 - 79
1 May 2017
Gibbs D
Full Access

Background. Bone Morphogenetic Protein (BMP) has been used in clinical practice to stimulate fracture healing and spinal arthrodesis. Difficulty in localising and maintaining BMP at the target site has resulted in the use of large doses of BMP, and has been associated with significant adverse effects. We have previously shown clay hydrogels can bind growth factors for localised efficacy. We hypothesised that localisation of BMP within clay gels would reduce the dose required to mediate bone formation. Methods. 2×10-4mg and 1×10-5 mg BMP were mixed in Laponite and applied to collagen sponge. 3 sponges containing high dose, and 3 containing low dose BMP were implanted subcutaneously in a mouse. This process was repeated in 8 mice, for controls, alginate hydrogel was used in a further 8 mice, and 1 mouse received 6 blank collagen scaffolds. Micro Computed Tomography was used to assess bone formation fortnightly; at 8 weeks the mice were culled and underwent histological analysis. Results. Mean Bone Volume formed within collagen per μg BMP was significantly greater with Laponite and low dose BMP compared to Alginate and Laponite with high dose BMP (p<0.0001). No bone formation was observed with Alginate and low dose BMP. Conclusions. We have demonstrated that Laponite is able to reduce, by several orders, the effective dose of BMP required to mediate ectopic bone formation compared to current gold standard methods of BMP delivery. Clinical translation of this finding offers, potentially, great significance to orthopaedic surgery. Level of Evidence. In vivo study. Approval. Our study received ethical approval complied with Home Office licensing. Acknowledgments. Funded by grants from EU(FP7) Biodesign, Rosetrees Trust, BBSRC and EPSRC


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 18 - 18
1 Nov 2018
Martín-Saavedra FM Sánchez-Casanova S Escudero-Duch C Falguera M Prieto M Arruebo M Santamaría J Vilaboa N
Full Access

There is a growing interest in the development of tissue engineering (TE) therapies to repair damaged bone. Among the scaffolds for TE applications, injectable hydrogels have demonstrated great potential as three-dimensional cell cultures in bone TE, owing to their high water content, porous structure that allows cell transplantation and proliferation, similarity to the natural extracellular matrix and ability to match irregular defects. We investigated whether fibrin-based hydrogels capable of transducing near infrared (NIR) energy into heat can be employed to lead bone repair. Hollow gold nanoparticles with a plasmon surface band absorption at ∼750 nm, a NIR wavelength within the so called “tissue optical window”, were used as fillers in injectable fibrin-based hydrogels. These composites were loaded with genetically-modified cells harbouring a heat-activated and rapamycin-dependent gene circuit to regulate transgenic expression of the reporter gene firefly luciferase (fLuc). NIR-responsive cell constructs were injected to fill a 4 mm diameter critical-sized defect (CSD) in the parietal bone of mouse calvaria. NIR-irradiation in the presence of rapamycin triggered a pattern of fLuc activity that faithfully matched the illuminated area of the implanted hydrogel. Having shown that this platform can control the expression of a transgene product, we tested its effectiveness on regulating the secretion of transgenic bone morphogenetic protein 2 (BMP-2) from NIR-responsive hydrogels implanted in CSD. The spatiotemporal pattern of transgenic BMP-2 secretion induced by NIR-irradiation in the presence of rapamycin significantly stimulated bone regeneration from the edge of osteotomy in the CSD practiced, validating the therapeutic approach


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 615 - 615
1 Oct 2010
Chassanidis C Dailiana Z Kollia P Koromila T Malizos K Samara S Varitimidis S
Full Access

Introduction: Periosteum is a tissue with pluripotential mesenchymal cells (MSCs). During fracture repair several growth factors are released from periosteum, including bone morphogenetic proteins (BMPs), which induce the differentiation of bone marrow stromal cells towards the osteoblastic lineage, therefore increasing the pool of mature bone forming cells and enhance the differentiated function of osteoblasts. The purpose of our study is to evaluate the expression of periosteal BMPs mRNA from fracture samples, collected within 24 hours of fracture and to compare it with BMPs expression from periosteal samples of normal (non-fractured) bones. Materials and Methods: Periosteum samples were collected from 25 patients with recent fracture (during the past 24 hours) (age: 12–80) and 25 individuals without fracture (age: 10–73). BMPs (BMP2, BMP4, BMP6) mRNA levels were analysed by Real Time RT-PCR by using the Light Cycler machine and PBGD as a housekeeping gene. Results: BMP2 mRNA levels were significantly higher (p< 0.05) in normal samples (median:12.15) than in fracture (median:4.39). BMP6 and BMP4 mRNA expression followed similar pattern to that of BMP2 but in significant lower levels. In normal samples, BMP4 mRNA median levels were 1.99, while in fracture samples the levels were significantly lower (median:0.35), (p< 0.05). BMP6 mRNA levels were also higher in normal samples (median:2.21) than in fractures (median:1.87) (p> 0.05). Furthermore, the decrease of BMPs mRNA levels in fracture samples was higher for BMP4 followed by BMP2 and BMP6. Discussion: Our results indicate high BMP2 mRNA levels expressed from periosteal cells. In recent fractures there is a significant reduction of BMP2 compared to normal samples; however, the expression of BMP2 remains more elevated in comparison to the other BMPs highlighting the potential role of BMP2 at the initiation of healing process of fractures. BMP6 and BMP4 expression was similar among normal periosteal cells while levels of BMP6 were higher than BMP4 in fracture periosteal cells. The suppression of BMP6 expression was minimum and less significant than BMP2 and BMP4 suppression indicating the potential role of BMP6 at the early stages of MSCs differentiation in periosteum. On the other hand, BMP4 remains in low levels in any confrontation and seems that plays a minor role in early healing process of fracture. BMPs are considered to play central role in fracture response and bone remodelling but further investigation has to be done as much in their correlation and toward other growth factors as in their expression levels during bone fracture repair process


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 569 - 569
1 Aug 2008
Clint SA Oddy MJ Lambert SM Bayley JIL
Full Access

Recombinant Bone Morphogenetic Protein 7 (OP-1) has been available in the UK since 2001, but there has been little published data on its use in the upper limb. In our institution OP-1 has been used in the management of 23 upper limb patients between 2001–2005, including 10 humeral non-unions. We believe this represents one of the largest single-unit cohorts of humeral fractures treated with OP-1. We reviewed the 10 humeral patients, who were all tertiary referrals with established non-unions. Two had been treated non-operatively before referral. The remaining eight had undergone a mean of 2.1 operations before OP-1 was used, with autologous bone grafting used in the majority of cases. Surgery occurred at a mean of 70.5 months following initial fracture. Seven patients underwent revision of the fracture fixation, and autologous bone graft was used with the OP-1 in 8 cases. Clinical union was established in 8 patients (80%) within a mean of 7.4 months. Radiological union was achieved in 8 patients (80%) within a mean of 9.1 months. No complications or adverse effects from the use of OP-1 were encountered. Both cases which failed to unite had a definite history of deep infection prior to index surgery, despite initial treatment with a staged revision procedure before OP-1 use. This study shows that OP-1 can be used successfully in the treatment of recalcitrant non-unions of the humerus following failure of traditional fracture management methods


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 36 - 36
1 Mar 2006
Bilic R Simic P Jelic M Stern-Padovan R Vukicevic S Pecina M
Full Access

Background: Bone morphogenetic proteins (BMPs) induce new bone in patients with bone defects and at extraskeletal sites in animals. Standard treatment for symptomatic scaphoid non-unions is bone graft with or without internal fixation by a screw or wires. We tested the ability of human recombinant osteogenic protein-1 (OP-1, BMP-7) with compressed autologous or allogeneic bone graft to accelerate the healing of scaphoid non-union. Study Design: Randomized and controlled pilot study in 17 patients with a scaphoid nonunion. Methods: Patients were randomly assigned to one of three groups: (1) Autologous iliac graft (n=6), (2) Autologous iliac graft + OP-1 (n=6) and (3) Allogeneic iliac graft + OP-1 (n=5). Radiographic, scintigraphic and clinical outcomes were assessed throughout the follow-up period of 24 months. Results: OP-1 improved the performance of both autologous and allogeneic bone implants. Three dimensional helical CT scans and scintigraphy showed that the pre-existing sclerotic bone within proximal scaphoid poles was mainly replaced in OP-1 treated patients with well vascularized new bone. Addition of OP-1 to allogeneic bone implant equalized the clinical outcome with the autologous graft procedure and enabled circumventing the second donor graft harvest procedure resulting in less blood loss, shorter anesthesia and no pain at the donor side. Conclusion: This is the first evidence that a recombinant human BMP accelerates scaphoid bone non-union repair and resorption of sclerotic bone in this specific microenvironment. Clinical Relevance: OP-1 might be successfully used in healing of scaphoid non-union


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_23 | Pages 16 - 16
1 May 2013
Peterson N Reehal T Rourke K Chan S Narayan B
Full Access

Statement of purpose. To determine the outcome of the use of Bone Morphogenetic Protein 7 (BMP7) as a replacement for bone graft in a limb reconstruction unit. Methods. Retrospective case note and imaging review was performed on a cohort of 71 consecutive patients from October 2009 to October 2012 in whom BMP7 was used to achieve union. The patients were identified from a pharmacy database. Factors analysed included the perceived indication, location in the skeleton, age, comorbidities, type of procedure (non-union, fusion, docking site etc), complications and need for revision surgery. Results. BMP7 was used in 71 patients with a median age of 63 (mean 58, range 17–86). The majority of patients were in the seventh decade. 62 were non-unions, eight were for fusion of docking site and one for fusion of an osteotomy. Circular external fixation was used in 20, IM nails in four, and plate fixation in 47. Indications for using BMP7 as opposed to bone graft included advanced age, immunosuppressive comorbidities or medication and obesity. In 65 cases bony union was achieved after the index procedure and one patient needed further surgery. There were five failures: two patients died before union and three failed to heal with the index intervention, leading to 74 procedures in 71 patients. BMP7 was used in several anatomic sites: femur (n=29), humerus (n=15), tibia (n=18) and in fusion of a joint (n=9). Overall success rate for achieving union was 93%. Local inflammation lasting a mean of three weeks was seen in six cases, and five patients developed heterotopic ossification, of which one was symptomatic. Conclusion. BMP 7 can be used as a replacement for autologous bone graft with predictable success in situations where bone graft harvest may be deemed unsuitable either because of local or systemic factors


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 1 - 1
1 Aug 2012
Shoaib A Rashid M Lahoti O Groom A Phillips S
Full Access

Objectives. Fracture non-union poses a significant challenge to treating orthopaedic surgeons. These patients often require multiple surgical procedures. The incidence of complications after Autologous Bone Graft (ABG) harvesting has been reported up to 44%. These complications include persistent severe donor site pain, infection, heterotopic ossification and antalgic gait. We retrospectively compared the use of BMP-7 alone in long bone fracture Non-union, with patients in whom BMP-7 was used in combination with the Autologous Bone Graft (ABG). Material and Methods. The databases of our dedicated Limb Reconstruction Unit were searched for patient with three common long bone fractures Non-unions (Tibia, Femur and Humerus). The patients who had intra-operative use of Bone Morphogenetic Protein (BMP-7) alone and in combination with ABG were evaluated. 53 Patients had combined use of ABG and BMP-7, and 65 patients had BMP-7 alone. Results. In the ABG and BMP-7 group, the union rate for femoral (n=18) Non-unions was 83%, for humeral (n=16) Non-unions 81%, and for tibia (n=19) Non-unions it was 47%. In the BMP-7 alone group, 83% of the femoral (n=12) Non-unions, 87% of the humeral (n=16) and 56% of the tibial (n=37) Non-unions healed. The common risk factors for Non-union were comparable in both the groups and included location and nature (open vs closed) of fracture, infection, smoking and NSAIDs use. The average time to union in ABG+BMP-7 group was 8.1 months (range 3-30 months) and in BMP-7 alone group it was 7.2 months (range 3-24 months). Conclusion. Autologous Bone Grafting has a pivotal role in limb reconstruction surgery but its indication should be carefully evaluated in view of considerable morbidity associated with graft donor site. Our study did not show any significant difference in the union rates of common long bone fracture Non-unions treated with BMP-7 alone or with a combination of Autologous Bone Graft and BMP-7


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 169 - 169
1 May 2012
Vaccaro A
Full Access

Cahill et. al. published a large review of the use of BMP in spinal fusions. They reviewed the nationwide inpatient database, which represents approximately 25% of use U.S. Community Hospitals from the years 2002 to 2006. This included over 300,000 fusion type procedures. They noted increased complications with the use of anterior cervical procedures specifically increased complications with increased dysphasia and wound complications.

Due to these concerns, the Food and Drug Administration released last year a public health notification about the potential life threatening complications related to the use of BMP in anterior cervical spine fusions. Joseph & Rampersaud noticed a 20% incidence of heterotopic ossification in patients undergoing this procedure versus only 8% for patients who had undergone fusions without BMP.

Wong et. al. published a report on five cases of neurologic injury that relate to the use of BMP and the formation of heterotopic bone. Again, the suggestion of a barrier or closure defect was brought up and this may help minimise the risks; however, further work is noted. Multiple authors have noted a phenomenon of osteolysis occurring around graft fusion sites for the use of BMP. McCullen et. al. evaluated that 32 levels in 26 patients who had undergone a TLIF procedure. It is unclear the carcinogenic and tetraogenic effects of the use of BMP in the spine and also, the effects of repeat exposures on BMP has yet to be addressed. Finally, the long term cost and benefits of the use of BMP on the health care system has yet to be fully addressed.

So in conclusion, BMP2 is effective in producing fusions especially in challenging environments, deformity, smoking and infection. However, the complications continue to be a concern especially with regards to interbody fusions as well as in the cervical spine.


Bone & Joint Research
Vol. 1, Issue 7 | Pages 145 - 151
1 Jul 2012
Sharma A Meyer F Hyvonen M Best SM Cameron RE Rushton N

Objectives

There is increasing application of bone morphogenetic proteins (BMPs) owing to their role in promoting fracture healing and bone fusion. However, an optimal delivery system has yet to be identified. The aims of this study were to synthesise bioactive BMP-2, combine it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide) (α-TCP/PLGA) nanocomposite and study its release from the composite.

Methods

BMP-2 was synthesised using an Escherichia coli expression system and purified. In vitro bioactivity was confirmed using C2C12 cells and an alkaline phosphatase assay. The modified solution-evaporation method was used to fabricate α-TCP/PLGA nanocomposite and this was characterised using X-ray diffraction and scanning electron microscopy. Functionalisation of α-TCP/PLGA nanocomposite by adsorption of BMP-2 was performed and release of BMP-2 was characterised using an enzyme-linked immunosorbent assay (ELISA).


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 614 - 614
1 Oct 2010
Chassanidis C Dailiana Z Kollia P Koromila T Malizos K Samara S Varitimidis S
Full Access

Aims: Previous work at this institution has demonstrated that perfusion beneath circumferential negative pressure wound therapy (NPWT) is decreased, which conflicts with most studies on NPWT and perfusion. This study investigates perfusion beneath non-circumferential NPWT in humans and also discusses the potential methodology flaw common to all previous research in this field.

Methods: Tests were conducted on both lower limbs of six volunteers (N=12). Volunteers were sequentially randomised into two groups, which would receive different suction pressures (−400 mmHg and −125 mmHg). A doughnut shaped NPWT dressing was placed over the shin of each leg. The central hole allowed for measurement of the transcutaneous partial pressure of oxygen (tcpO2), an indirect measure of perfusion. Readings were taken every five minutes throughout the experiment. After acquiring readings for 15 minutes to establish a baseline, suction was switched on and readings were taken for another 15 minutes. Suction was then disconnected and readings were taken for 15 minutes. Suction was then reapplied and the sequence was repeated. Data were analysed using the Wilcoxon and Mann-Whitney tests.

Results: On applying suction pressures of −400 mmHg, there was a significant reduction of the tcpO2 (mean reduction 7.35 mmHg, SD 7.4, p< 0.0005). At −125 mmHg, there was also a significant reduction of the tcpO2 (mean reduction 5.10 mmHg, SD 7.4, p< 0.0005). Although there was a tendency for greater reductions in the −400 mmHg group this was not significantly different to the −125 mmHg group (p=0.07).

Conclusion: NPWT reduces tissue perfusion, with higher suction pressure resulting in greater reductions in perfusion. Studies on perfusion using laser Doppler, which report findings contrary to these, may be flawed due to the measuring technique of this device. The compressive forces of NPWT are likely to result in false increased readings on application of suction when using the laser Doppler.

This represents a paradigm shift in our understanding of NWPT and that these dressings should be used with caution on tissues with compromised perfusion.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 355 - 355
1 Jul 2011
Chassanidis C Kollia P Samara S Koromila T Varitimidis S Malizos K Dailiana Z
Full Access

Periosteum is a specialized connective tissue that surrounds bone, containing progenitor cells that develop into osteoblasts. The osteo-progenitor cells along with growth factors, such as BMPs, play critical role in development, reconstruction and bone formation. Aim: to evaluate the expression of BMPs in human periosteum and in different subrgroups, including different donor sites, gender, and smoking habits.

Gene expression of BMPs 2,4,6,7 was performed in 60 periosteal samples using quantitative RT-PCR. Samples were obtained from 32 men/28 women, 22 smokers/38 non-smokers, 29 lower/31 upper extremities.

BMP2 gene expression was significantly higher (median: 12.02, p< 0.05) than the mRNA levels of BMPs 4,6,7 (median: 1.36, 2.55, 0.04) in all samples. BMP2 mRNA levels were higher in large compared to small bones (median: 13.4 vs 9.48), while BMPs 4,6,7 gene expression was similar (1.3 vs 1.4, 2.7 vs 2.1, 0.04 vs 0.03, respectively). In lower extremities, BMPs mRNA levels were higher than in the upper; the same was detected in non-smokers versus smokers group (BMPs2,4,6,7: 13.9 vs 1.5, 3.1 vs 0.048, 8.7 vs 1.06, 1.6 vs 0.026, respectively). mRNA transcripts of BMP2 were higher in men than women (median: 13.1 vs 10.8).

In our study, BMP2 expression is characteristically higher than that of BMP4, BMP6 and BMP7, highlighting the critical role that BMP2 plays in bone homeostasis. Furthermore, the elevated expression of BMP2 in men towards women, and of all BMPs of the lower extremity samples indicate the effect of hormones and mechanical factors in periosteal BMPs gene regulation; while the effect of smoking is reflected in the reduction of BMPs expression in smokers.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 253 - 253
1 Jul 2008
FERREIRA E POTIER E MIR L PETITE H SEDEL L
Full Access

Purpose of the study: Several studies have demonstrated the usefulness of mesenchymatous stem cells (MSC) for cell therapy aimed at favoring bone tissue healing. Bone morphogenesis proteins (BMP) orient MSC towards osteoblastic differentiation. Since they are rapidly degraded in the organism, these proteins require a continuous release system to potentialize their biological activity in a controlled localized manner. We evaluated the usefulness of using the electroporation technique to insert a BMP transgene into the MSC of rats to enable sufficient transient expression of BMP genes to enable satisfactory bone healing. We first developed electroporation conditions for rat MSC and checked cell viability after the electric shock. Secondly, in order to obtain quantitative and/or temporal BMP expression, we tested the influence of different promoters on transcription actvity.

Material and methods: To determine the electroporation parameters, MCS were transfected with the pCMV-LacZ plasmid using two electric impulsions: a series of eight 100 impulsions/μs at high voltage (900-170V/cm) followed or not by a series of eight 12.5 ms low-voltage impulsions (60 V/cm). After determining the electroporation conditions, six plasmids carrying different promoters were electroporated.

Results: The best transfection rate in rat MSC was obtained with a series of 8 impulsions at 1500 V/cm. Before the electrical shock, the suspended rat MSC had to be incubated at ambient temperature to favor cell survival. Proliferation of electroporated cells was comparable to that of non electroporated cells. Surprisingly, addition of low-voltage pulses significantly decreased the efficacy of transfection. In addition, MSC transfected with the promoters GAPDH and beta-actin presented a beta-galactoside activity (at 48 h) superior to that obtained with the pCMV promoter.

Discussion: After optimization of these parameters, we demonstrated that MCS can be effectively transfected by electroporation. The following steps will be to check for long-term expression of beta-galactoside by electroporated MSC, transfection of MSC with plasmids or the BMP-2 gene controlled by these same promoters and monitoring promoter activity as a function of the stage of MSC differentiation.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 71 - 71
1 Feb 2012
Dahabreh Z Dimitriou R Branfoot T Britten S Matthews S Giannoudis P
Full Access

The purpose of this study was to evaluate the efficacy of human recombinant osteogenic protein 1 (rhBMP-7) for the treatment of fracture non-unions and to estimate the health economics aspect of its administration.

Twenty-four patients (18 males, mean age 39.1 (range 18-79)) with 25 fracture non-unions were treated with rhBMP-7 in our institution (mean follow-up 15.4 months (range 6-29)). Successful completion of treatment was defined as the achievement of both clinical and radiological union. The cost of each treatment episode was estimated including hospital stay, theatre time, orthopaedic implants, drug administration, investigations, clinic attendances, and physiotherapy treatments. The total cost of all episodes up to the point of receiving BMP-7 and similarly following treatment with BMP-7 were estimated and analysed.

Of the 25 cases, 21 were atrophic (3 associated with bone loss) and 4 were infected non-unions. The mean number of operations performed prior to rhBMP-7 application was 3.4, including autologous bone graft in 9 cases and bone marrow injection in one case. In 21 out of the 25 cases (84%), both clinical and radiological union occurred. Mean hospital stay before and after receiving rhBMP-7 was 26.84 days per fracture and 7.8 days per fracture respectively. Total cost of treatments prior to BMP-7 was £346,117 [£13,844.68 per fracture]. Costs incurred following BMP-7 administration were estimated as £183,460 [£7,338.4 per fracture].

rhBMP-7 was used as a bone stimulating agent with or without conventional bone grafting with a success rate of 84% in this series of patients with persistent fracture non-unions. The average cost of its application was £7,338 [53.0% of the total costs of previous unsuccessful treatment of non –unions, p<0.05). Treating non-union is costly, but the financial burden could be reduced by early rhBMP-7 administration when a complicated or persistent non-union is present or anticipated. Therefore, this study supports the view that rhBMP-7 is a safe and power adjunct to be considered in the surgeon's armamentarium for the management of such difficult cases.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 342 - 352
9 Jul 2024
Cheng J Jhan S Chen P Hsu S Wang C Moya D Wu Y Huang C Chou W Wu K

Aims. To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration. Methods. The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm. 2. , 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens. Results. In the histopathological analysis, the macro-morphological grading scale showed a significant increase, while the histological score and cartilage repair scale of ESWT exhibited a significant decrease compared to OCD at the 8- and 12-week timepoints. At the 12-week follow-up, ESWT exhibited a significant improvement in the volume of damaged bone compared to OCD. Furthermore, immunohistochemistry analysis revealed a significant decrease in type I collagen and a significant increase in type II collagen within the newly formed hyaline cartilage following ESWT, compared to OCD. Finally, SRY-box transcription factor 9 (SOX9), aggrecan, and TGF-β, BMP-2, -3, -4, -5, and -7 were significantly higher in ESWT than in OCD at 12 weeks. Conclusion. ESWT promoted the effect of TGF-β/BMPs, thereby modulating the production of extracellular matrix proteins and transcription factor involved in the regeneration of articular cartilage and subchondral bone in an OCD rat model. Cite this article: Bone Joint Res 2024;13(7):342–352


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 117 - 117
2 Jan 2024
Hankenson K
Full Access

Growth factors produced by inflammatory cells and mesenchymal progenitors are required for proper bone regeneration. Signaling pathways activated downstream of these proteins work in concert and synergistically to drive osteoblast and/or chondrocyte differentiation. While dysregulation can result in abnormal healing, activating these pathways in the correct spatiotemporal context can enhance healing. Bone morphogenetic protein (BMP) signaling is well-recognized as being required for bone regeneration, and BMP is used clinically to enhance bone healing. However, it is imperative to develop new therapeutics that can be used alone or in conjunction with BMP to drive even more robust healing. Notch signaling is another highly conserved signaling pathway involved in tissue development and regeneration. Our work has explored Notch signaling during osteoblastogenesis and bone healing using both in vitro studies with human primary mesenchymal progenitor cells and in vivo studies with genetically modified mouse models. Notch signaling is required and sufficient for osteoblast differentiation, and is required for proper bone regeneration. Indeed, intact Notch signaling through the Jagged-1 ligand is required for BMP induced bone formation. On-going work continues to explore the intersection between BMP and Notch signaling, and determining cell types that express Notch receptors and Notch ligands during bone healing. Our long-term objective is to develop Notch signaling as a clinical therapy to repair bone


Bone & Joint Research
Vol. 7, Issue 2 | Pages 173 - 178
1 Feb 2018
Peng X Wu X Zhang J Zhang G Li G Pan X

Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment. Cite this article: X. Peng, X. Wu, J. Zhang, G. Zhang, G. Li, X. Pan. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res 2018;7:173–178. DOI: 10.1302/2046-3758.72.BJR-2017-0172.R1


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 10 - 10
11 Apr 2023
Manon J
Full Access

Periosteal mesenchymal stem cells (PMSC) are an emerging niche of stem cells to enhance bone healing by tissue engineering process. They have to be differentiated into osteoprogenitors in order to synthesize new bone matrix. In vitro differentiation with specific differentiation medium (DM) is not exactly representative of what occurs in vivo. The interaction between PMSC and growth factors (GF) present in biological matrix is somewhat less understood. The goal of this study is to explore the possibility of spontaneous PMSC differentiation in contact with different biological matrices without DM. 500.000 porcine PMSC were seeded on 6-well plates and cultured with proliferation medium (PM). When reaching 80% confluence, biological samples (n=3) of demineralized bone matrix (DBM), decellularized porcine bone allograft (AOp), human bone allograft (AOh), human periosteum (HP) and human fascia lata (HFL) were added. Negative and positive control wells included cells with only PM or DM, respectively. The differentiation progress was assessed by Alizarin Red staining at days 7, 14 and 21. Bone morphogenetic protein content (BMP 2, 4, 5, 6, 7, 8, 9 and 11) of each sample was also investigated by western blot. Alizarin red highlighted bone nodules neoformation on wells containing AOp, AOh and DBM, like positive controls. HP and HFL wells did not show any nodules. These results are correlated to a global higher BMP expression profile in AOp than in HP and HFL but not statistically significant (p=0.38 and p>.99, respectively). The highest expression in each tissue was that of BMP2 and BMP7, which play an important role in osteoinduction. PMSC are well known to participate to bone formation but, despite BMP presence in HP and HFL, they did not permit to achieve osteogenesis alone. The bone contact seems to be essential to induce in vitro differentiation into osteoprogenitors