header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:



Full Access


7th Congress of the European Federation of National Associations of Orthopaedics and Traumatology, Lisbon - 4-7 June, 2005


Background: Bone morphogenetic proteins (BMPs) induce new bone in patients with bone defects and at extraskeletal sites in animals. Standard treatment for symptomatic scaphoid non-unions is bone graft with or without internal fixation by a screw or wires. We tested the ability of human recombinant osteogenic protein-1 (OP-1, BMP-7) with compressed autologous or allogeneic bone graft to accelerate the healing of scaphoid non-union.

Study Design: Randomized and controlled pilot study in 17 patients with a scaphoid nonunion.

Methods: Patients were randomly assigned to one of three groups: (1) Autologous iliac graft (n=6), (2) Autologous iliac graft + OP-1 (n=6) and (3) Allogeneic iliac graft + OP-1 (n=5). Radiographic, scintigraphic and clinical outcomes were assessed throughout the follow-up period of 24 months.

Results: OP-1 improved the performance of both autologous and allogeneic bone implants. Three dimensional helical CT scans and scintigraphy showed that the pre-existing sclerotic bone within proximal scaphoid poles was mainly replaced in OP-1 treated patients with well vascularized new bone. Addition of OP-1 to allogeneic bone implant equalized the clinical outcome with the autologous graft procedure and enabled circumventing the second donor graft harvest procedure resulting in less blood loss, shorter anesthesia and no pain at the donor side.

Conclusion: This is the first evidence that a recombinant human BMP accelerates scaphoid bone non-union repair and resorption of sclerotic bone in this specific microenvironment.

Clinical Relevance: OP-1 might be successfully used in healing of scaphoid non-union.

Theses abstracts were prepared by Professor Roger Lemaire. Correspondence should be addressed to EFORT Central Office, Freihofstrasse 22, CH-8700 Küsnacht, Switzerland.