Objectives. The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an ex vivo canine model. Methods. Specifically, canine flexor digitorum profundus tendons were used for this study and were divided into the following groups: (1) untreated, unprocessed normal tendon; (2) decellularised tendon; (3)
Aims. The effects of remnant preservation on the anterior cruciate ligament (ACL) and its relationship with the tendon graft remain unclear. We hypothesized that the co-culture of remnant cells and
Aims. Proliferation, migration, and differentiation of anterior cruciate ligament (ACL) remnant and surrounding cells are fundamental processes for ACL reconstruction; however, the interaction between ACL remnant and surrounding cells is unclear. We hypothesized that ACL remnant cells preserve the capability to regulate the surrounding cells’ activity, collagen gene expression, and tenogenic differentiation. Moreover, extracorporeal shock wave (ESW) would not only promote activity of ACL remnant cells, but also enhance their paracrine regulation of surrounding cells. Methods. Cell viability, proliferation, migration, and expression levels of Collagen-I (COL-I) A1, transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF) were compared between ACL remnant cells untreated and treated with ESW (0.15 mJ/mm. 2. , 1,000 impulses, 4 Hz). To evaluate the subsequent effects on the surrounding cells,
Regenerative medicine provides the hope for many intractable diseases as a treatment option and the area is currently the subject of intense investigation in academia and industry. Human
It is becoming apparent that mesenchymal stem cells (MSCs) do not directly contribute to mesenchymal tissue regeneration. Pre-clinical attempts to repair large bone defects in big animal models have been hampered by poor MSCs survival after implantation which impedes their direct or indirect effects. Based on previous work, we hypothesized that a venous axial vascularization of the scaffold supporting MSCs or their combination with fresh bone marrow (BM) aspirate would improve their in vivo survival. Cross-shape profile tubular microporous monetite implants (12mm long, 5mm large) as two longitudinal halves were produced by 3D powder printing. They were implanted around the femoral veins of Wistar rats and loaded with 1mL of BM aspirate either alone or supplemented by 107 MSCs. This was compared with BM-free scaffolds loaded only with 107 MSCs. After 8 weeks bone formation were investigated by micro-CT, scanning electron microscopy, histology and immunohistochemistry.Abstract
Purpose
Methods
Articulating cartilage experiences a multitude of biophysical cues. Due to its primary function in distributing load with near frictionless articulation, it is clear that a major stimulus for cartilage homeostasis and regeneration is the mechanical load it experiences on a daily basis. While these effects are considered when performing in vivo studies, in vitro studies are still largely performed under static conditions. Therefore, an increasing complexity of in vitro culture models is required, with the ultimate aim to recreate the articulating joint as accurately as possible. We have for many years utilized a complex multiaxial load bioreactor capable of applying tightly regulated compression and shear loading protocols. Using this bioreactor, we have been able to demonstrate the mechanical induction of human
Despite extensive research aimed at improving surgical outcomes of enthesis injuries, re-tears remain a common problem, as the repairs often lead to fibrovascular scar as opposed to a zonal enthesis. Zonal enthesis formation involves anchoring collagen fibers, synthesizing proteoglycan-rich fibrocartilage, and mineralizing this fibrocartilage [1]. During development, the hedgehog signaling pathway promotes the formation and maturation of fibrocartilage within the zonal tendon-to-bone enthesis [1-4]. However, whether this pathway has a similar role in adult zonal tendon-to-bone repair is not known. Therefore, we developed a murine anterior cruciate ligament (ACL) reconstruction model [5] to better understand the zonal tendon-to-bone repair process and perturb key developmental regulators to determine the extent to which they can promote successful repair in the adult. In doing so, we activated the hedgehog signaling pathway both genetically using transgenic mice and pharmacologically via agonist injections. We demonstrated that both treatments improved the formation of zonal attachments and tunnel integration strength [6]. These improved outcomes were due in part to hedgehog signaling's positive role in proliferation of the
Regeneration of bone defects in elderly patients is limited due to the decreased function of bone forming cells and compromised tissue physiology. Previous studies suggested that the regenerative activity of stem cells from aged tissues can be enhanced by exposure to young systemic and tissue microenvironments. The aim of our project was to investigate whether extracellular matrix (ECM) engineered from human induced pluripotent stem cells (hiPSCs) can enhance the bone regeneration potential of aged human
Introduction: Alcohol can induce adipogenesis by
Objectives. To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Methods. Osteogenic cell sheets were prepared by culturing rat
Introduction: Oxidative stress occurs when reactive oxygen species (ROS) are produced faster than they can be removed by cellular defence mechanisms contributing to ageing, many chronic diseases, such as atherosclerosis, RA, Parkinson and Alzheimer’s disease and skeletal pathologies. Here we address the impact of ROS on the viability of early osteogenic precursors in the bone marrow and study the influence of estrogen on this interaction. Cells have a number of mechanisms to protect themselves from ROS, which are constantly being formed in the cell through normal metabolic pathways, such as Vitamin E, C and estrogen. Estrogen has been shown to prevent intracellular accumulation of peroxide and to attenuate oxidant-induced death of neuronal and endothelial cells. In addition, it contributes significantly to bone turnover and relieves postmenopausal symptoms. This study has focused on the potential anti-oxidant properties of estrogen against oxidative on
Regeneration of bone defects in elderly patients is limited due to the decreased function of bone forming cells and compromised tissue physiology. Previous studies suggested that the regenerative activity of stem cells from aged tissues can be enhanced by exposure to young systemic and tissue microenvironments. The aim of our project was to investigate whether extracellular matrix (ECM) engineered from human induced pluripotent stem cells (hiPSCs) can enhance the bone regeneration potential of aged human
Angiogenesis is the formation of new blood vessels occurring in an adult through migration and proliferation of endothelial cells, and tubular structures formation. Angiogenesis is modulated by growth factors, cytokines, adhesion molecules, integrins, and enzymes. Angiogenesis plays a role in many physiological processes (i.e. remodeling of ischemic muscle, woumd healing, fracture repair) as well as in pathological process such as rheumathoid arthritis and metastases. In bone, vasculature is essential for cartilage resorption and angiogenesis temporally precedes osteogenesis: the origin of bone is the artery carrying calcium and phosphate ions. Osteogenesis takes place near newly formed vessels, that mediate delivery of osteoprogenitor cells, secrete mitogens for osteoblasts, and transport nutrients and oxygen. Inadequate bone vascularity is associated with decreased bone formation and bone mass. In animals, inhibition of angiogenesis during fracture repair results in the formation of fibrous tissue. A poor blood supply is therefore considered as a risk factor for an impaired bone healing. Angiogenesis is vital in tissue engineering, especially when matrices are colonized by cells with an aerobic metabolism. The scaffold must not only support the growth of the cells making up the organ which should be replaced in vivo (i.e. osteoblasts); it must also support the growth of endothelial cells and develop an effectively functioning vasculature to supply the cells with oxygen. Osteogenesis of tissue engineered materials could be limited by a lack of vascularization, and the bioengineered graft may be potentially resorbed in the same way as a conventional bone graft. In rats, angiogenesis in coralline materials implanted in ectopic muscular sites, was higher when the biomaterial was combined with a vascular pedicle or was coated with
Abstract. Objectives. Assess and characterise the suitability of a novel silk reinforced biphasic 3D printed scaffold for osteochondral tissue regeneration. Methods. Biphasic hybrid scaffolds consisted of 3D printed poly(ethylene glycol)-terephthalate-poly(butylene terephthalate)(PEGT/PBT) scaffold frame work (pore size 0.75mm), which has been infilled with a cast and freeze dried porous silk scaffold (5×5×2mm. 3. ), in addition to a seamless silk top layer (1mm). Silk scaffolds alone were used as controls. Both the biphasic and control scaffolds were characterised via uniaxial compression testing (strain rate 0.1mm/min), and the potential biocompatibility of the scaffolds was tested via in vitro culture of seeded
Aims: Collagen implants are used for repair of chondral defects. We investigated the behavior of human chondrocytes of either healthy or osteoarthritic joints and ovine chondrocytes and
Introduction: Ethanol is one of risk factors associated with osteonecrosis, it has been demonstrated that ethanol induces adipogenesis, decreases osteogenesis in bone marrow stroma cells and produces intracellular lipid deposits, resulting in the death of osteocytes. Materials and Methods: In this approach, we isolated human bone marrow stroma cells and triggered for different differentiations. Results: These cells could be induced for osteogenesis, adipogenesis, and chondrogenesis. We also evaluated cell surface markers of isolated human
Summary. Methotrexate chemotherapy (commonly used in treating cancers and rheumatoid arthritis) creates an inflammatory condition in bone, decreasing osteogenesis, enhancing adipogenesis, increasing osteoclastogenesis, leading to bone loss and marrow adiposity; treatment with fish oil or folinic acid counteracts these negative effects and prevents bone loss. Introduction. Chemotherapy with anti-metabolite methotrexate (MTX) is commonly used in treating cancers and rheumatoid arthritis; however it is known to cause bone loss for which currently there are no adjunct preventative treatments. Methods and Materials. Using a rat model, this study investigated the damaging effects in bones caused by daily MTX injections (0.75mg/kg) for 5 consecutive days (mimicking induction phase treatment for childhood leukaemia) and also the potential protective benefits of omega-3 fatty acid-rich fish oil at different doses (0.25, 0.5 or 0.75 mL/100g BW) in comparison to antidote folinic acid (given i.p at 0.75mg/kg 6 hours post MTX, which is clinically used to reduce MTX toxicities in soft tissues). Results. Histological analysis showed that MTX significantly reduced primary spongiosa bone height and metaphyseal trabecular bone volume. MTX also significantly reduced density of osteoblasts at the secondary spongiosa. Ex vivo differentiation assays with
Introduction: Homogenous cell distribution and suffi-cient initial scaffold stability remain key issues for successful tissue engineered osteochondral constructs. The purpose of this study was to investigate the application of initial compression forces during the first 24 hours of cell culture followed by different stress patterns. Methods:
Introduction. P-15 (GTPGPQGIAGQRGVV), a fifteen residue synthetic peptide, is a structural analogue of the cell binding domain of Type 1 collagen and creates a biomimetic environment for bone repair when immobilized on anorganic bovine mineral (ABM) scaffolds. ABM-P-15 scaffolds have been shown to enhance