Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

LEVERAGING THE HEDGEHOG SIGNALLING PATHWAY TO IMPROVE TENDON-TO-BONE INTEGRATION

The European Orthopaedic Research Society (EORS) 31st Annual Meeting, Porto, Portugal, 27–29 September 2023. Part 2 of 2.



Abstract

Despite extensive research aimed at improving surgical outcomes of enthesis injuries, re-tears remain a common problem, as the repairs often lead to fibrovascular scar as opposed to a zonal enthesis. Zonal enthesis formation involves anchoring collagen fibers, synthesizing proteoglycan-rich fibrocartilage, and mineralizing this fibrocartilage [1]. During development, the hedgehog signaling pathway promotes the formation and maturation of fibrocartilage within the zonal tendon-to-bone enthesis [1-4]. However, whether this pathway has a similar role in adult zonal tendon-to-bone repair is not known. Therefore, we developed a murine anterior cruciate ligament (ACL) reconstruction model [5] to better understand the zonal tendon-to-bone repair process and perturb key developmental regulators to determine the extent to which they can promote successful repair in the adult. In doing so, we activated the hedgehog signaling pathway both genetically using transgenic mice and pharmacologically via agonist injections. We demonstrated that both treatments improved the formation of zonal attachments and tunnel integration strength [6]. These improved outcomes were due in part to hedgehog signaling's positive role in proliferation of the bone marrow stromal cell (bMSC) progenitor pool and subsequent fibrocartilage production of bMSC progeny cells that form the attachments. These results suggest that, similar to growth and development, hedgehog signaling promotes the production and maturation of fibrocartilage during tendon-to-bone integration in adults. Lastly, we developed localized drug delivery systems to further improve the treatment of these debilitating injuries in future translational studies.

Acknowledgements: This work was supported by NIH R01AR076381, R21AR078429, R00AR067283, F31AR079840, T32AR007132, and P30AR069619, in addition to the McCabe Fund Pilot Award at the University of Pennsylvania.


Email: