Advertisement for orthosearch.org.uk
Results 1 - 20 of 487
Results per page:
Bone & Joint Research
Vol. 12, Issue 8 | Pages 497 - 503
16 Aug 2023
Lee J Koh Y Kim PS Park J Kang K

Aims. Focal knee arthroplasty is an attractive alternative to knee arthroplasty for young patients because it allows preservation of a large amount of bone for potential revisions. However, the mechanical behaviour of cartilage has not yet been investigated because it is challenging to evaluate in vivo contact areas, pressure, and deformations from metal implants. Therefore, this study aimed to determine the contact pressure in the tibiofemoral joint with a focal knee arthroplasty using a finite element model. Methods. The mechanical behaviour of the cartilage surrounding a metal implant was evaluated using finite element analysis. We modelled focal knee arthroplasty with placement flush, 0.5 mm deep, or protruding 0.5 mm with regard to the level of the surrounding cartilage. We compared contact stress and pressure for bone, implant, and cartilage under static loading conditions. Results. Contact stress on medial and lateral femoral and tibial cartilages increased and decreased, respectively, the most and the least in the protruding model compared to the intact model. The deep model exhibited the closest tibiofemoral contact stress to the intact model. In addition, the deep model demonstrated load sharing between the bone and the implant, while the protruding and flush model showed stress shielding. The data revealed that resurfacing with a focal knee arthroplasty does not cause increased contact pressure with deep implantation. However, protruding implantation leads to increased contact pressure, decreased bone stress, and biomechanical disadvantage in an in vivo application. Conclusion. These results show that it is preferable to leave an edge slightly deep rather than flush and protruding. Cite this article: Bone Joint Res 2023;12(8):497–503


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 2 - 2
1 Mar 2021
Changoor A Suderman R Alshaygy I Fuhrmann A Akens M Safir O Grynpas M Kuzyk P
Full Access

Patients undergoing revision surgery of a primary total hip arthroplasty often exhibit bone loss and poor bone quality, which make achieving stable fixation and osseointegration challenging. Implant components coated in porous metals are used clinically to improve mechanical stability and encourage bone in-growth. We compared ultra-porous titanium coatings, known commercially as Gription and Porocoat, in an intra-articular model by press-fitting coated cylindrical implants into ovine femoral condyles and evaluating bone in-growth and fixation strength 4, 8 and 16 weeks post-operatively. Bilateral surgery using a mini-arthrotomy approach was performed on twenty-four Dorset-Rideau Arcott rams (3.4 ± 0.8 years old, 84.8 ± 9.3 kg) with Institutional Animal Care Committee approval in accordance with the Canadian Council on Animal Care. Cylindrical implants, 6.2 mm in diameter by 10 mm in length with surface radius of curvature of 35 mm, were composed of a titanium substrate coated in either Porocoat or Gription and press-fit into 6 mm diameter recipient holes in the weight-bearing regions of the medial (MFC) and lateral (LFC) femoral condyles. Each sheep received 4 implants; two Gription in one stifle (knee) and two Porocoat in the contralateral joint. Biomechanical push-out tests (Instron ElectroPuls E10000) were performed on LFCs, where implants were pushed out relative to the condyle at a rate of 2 mm/min. Force and displacement data were used to calculate force and displacement at failure, stiffness, energy, stress, strain, elastic modulus, and toughness. MFCs were fixed in 70% ethanol, processed undecalcified, and polished sections, approximately 70 µm thick (Exakt Micro Grinding system) were carbon-coated. Backscattered electron images were collected on a scanning electron microscope (Hitachi SU3500) at 5 kV and working distance of 5 mm. Bone in-growth within the porous coating was quantified using software (ImageJ). Statistical comparisons were made using a two-way ANOVA and Fisher's LSD post-hoc test (Statistica v.8). Biomechanical evaluation of the bone-implant interface revealed that by 16 weeks, Gription-coated implants exhibited higher force (2455±1362 N vs. 1002±1466 N, p=0.046) and stress (12.60±6.99 MPa vs. 5.14±7.53 MPa, p=0.046) at failure, and trended towards higher stiffness (11510±7645 N/mm vs. 5010±8374 N/mm, p=.061) and modulus of elasticity (591±392 MPa vs. 256±431 MPa, p=0.61). Similarly, by 16 weeks, bone in-growth in Gription-coated implants was approximately double that measured in Porocoat (6.73±3.86 % vs. 3.22±1.52 %, p=0.045). No statistically significant differences were detected at either 4 nor 8 weeks, however, qualitative observations of the exposed bone-implant interface, made following push-out testing, showed more bony material consistently adhered to Gription compared to Porocoat at all three time points. High variability is attributed to implant placement, resulting from the small visual window afforded during surgery, unique curvatures of the condyles, and presence of the extensor digitorum longus tendon which limited access to the LFC. Ultra-porous titanium coatings, know commercially as Gription and Porocoat, were compared for the first time in a challenging intra-articular ovine model. Gription provided superior fixation strength and bone in-growth, suggesting it may be beneficial in hip replacement surgeries where bone stock quality and quantity may be compromised


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 37 - 37
1 Jun 2018
Dorr L
Full Access

Dorr bone type is both a qualitative and quantitative classification. Qualitatively on x-rays the cortical thickness determines the ABC type. The cortical thickness is best judged on a lateral x-ray and the focus is on the posterior cortex. In Type A bone it is a thick convex structure (posterior fin of bone) that can force the tip of the tapered implant anteriorly – which then displaces the femoral head posteriorly into relative retroversion. Fractures in DAA hips have had increased fractures in Type A bone because of the metaphyseal-diaphyseal mismatch (metaphysis is bigger than diaphysis in relation to stem size). Quantitatively, Type B bone has osteoclastic erosion of the posterior fin which proceeds from proximal to distal and is characterised by flattening of the fin, and erosive cysts in it from osteoclasts. A tapered stem works well in this bone type, and the bone cells respond positively. Type C bone has loss of the entire posterior fin (stove pipe bone), and the osteoblast function at a low level with dominance of osteoclasts. Type C is also progressive and is worse when both the lateral and AP views show a stove pipe shape. If just the lateral x-ray has thin cortices, and the AP has a tapered thickness of the cortex a non-cemented stem will work, but there is a higher risk for fracture because of weak bone. At surgery Type C bone has “mushy” cancellous bone compared to the hard structure of type A. Tapered stems have high risk for loosening because the diaphysis is bigger than the metaphysis (opposite of Type A). Fully coated rod type stems fix well, but have a high incidence of stress shielding. Cemented fixation is done by surgeons for Type C bone to avoid fracture, and insure a comfortable hip. The large size stem often required to fit Type C bone causes an adverse-stem-bone ratio which can cause chronic thigh pain. I cement patients over age 70 with Type C bone which is most common in women over that age.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 35 - 35
1 Jun 2012
D'Lima D Wong J Patil S Flores-Hernandez C Colwell C Steklov N Kester M
Full Access

Introduction

Aligning the tibial tray is a critical step in total knee arthroplasty (TKA). Malalignment, (especially in varus) has been associated with failure and revision surgery. While the link between varus malalignment and failure has been attributed to increased medial compartmental loading and generation of shear stress, quantitative biomechanical evidence to directly support this mechanism is incomplete. We therefore constructed and validated a finite element model of knee arthroplasty to test the hypothesis that varus malalignment of the tibial tray would increase the risk of tray subsidence.

Methods


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 181 - 182
1 May 2011
D’lima D Kester M Wong J Steklov N Patil S Colwell C
Full Access

Introduction: Aligning the tibial tray is a critical step in total knee arthroplasty (TKA). Malalignment, (especially in varus) has been associated with failure and revision surgery. While the link between varus malalignment and failure has been attributed to increased medial compartmental loading and generation of shear stress, quantitative biomechanical evidence to directly support this mechanism is incomplete. We therefore constructed a finite element model of knee arthroplasty to test the hypothesis that varus malalignment of the tibial tray would increase the risk of tray subsidence.

Methods: Cadaver Testing: Fresh human knees (N = 4) were CT scanned and implanted with a TKA cruciate-retaining tibial tray (Triathlon CR. Stryker Orthopaedics). The specimens were subjected to ISO-recommended knee wear simulation loading for up to 100,000 cycles. Micromotion sensors were mounted between the tray and underlying bone to measure micromotion. In two of the specimens, the application of vertical load was shifted medially to generate a load distribution ratio of 55:45 (medial: lateral) to represent neutral varus-valgus alignment. In the remaining two specimens, a load distribution ratio of 75:25 was generated to represent varus alignment.

Finite element analysis: qCT scans of the tested knees were segmented using MIMICS (Materialise, Belgium). Material properties of bone were spatially assigned after converting bone density to elastic modulus. A finite element model of the tibia implanted with a tibial tray was constructed (Abaqus 6.8, Simulia, Dassault Systèmes). Boundary conditions were applied to simulate experimental mounting conditions and the tray was subjected to a single load cycle representing that applied during cadaver loading.

Results: The two cadaver specimens tested at 55:45 medial:lateral (M:L) force distribution survived the 100,000 cycle test, while both cadaver specimens tested at 75:25 M:L force distribution failed. The finite element model generated distinct differences in compressive strain distribution patterns in the proximal tibia. A threshold of 2000 microstrain was used for fatigue damage in bone under cyclic loading. Both specimens loaded under 75:25 M:L distribution demonstrated substantially larger cortical bone volumes in the proximal tibial cortex that were greater than this fatigue threshold.

Discussion and Conclusion: We validated a finite element model of tibial loading after TKA. Local compressive strains directly correlated with subsidence and failure in cadaver testing. A significantly greater volume of proximal tibial cortical bone was compressed to a strain greater than the fatigue threshold in the varus alignment group, indicating an increased risk for fatigue damage. This model is extremely valuable in studying the effect of surgical alignment, loading, and activity on damage to proximal bone.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 280 - 280
1 Jul 2014
Stadelmann V Potapova I Camenisch K Eberli U Richards G Moriarty F
Full Access

Summary Statement. In vivo microCT allows monitoring of subtle bone structure changes around infected implants in a rat model. Introduction. The principal causes of orthopedic implant revisions are periprosthetic bone loss and infections. Immediately after implantation, a dynamic process of bone formation and resorption takes place around an orthopedic implant, influencing its mechanical fixation. Despite its importance, the effect of bacteria on the temporal pattern of periprosthetic remodeling is still unknown. The aim of this study was to evaluate the morphological changes of bone adjacent to an implant in the presence and absence of infection using micro computed tomography (microCT). Materials and methods. Twenty-four three-month-old female Wistar rats were used in this study. Twelve rats received a single control screw (sterile) in the proximal part of the right tibia while the other twelve received an infected screw (1×10. 4. CFU Staphylococcus aureus). The self-tapping cancellous bone screws, custom made of PEEK and coated with 30µm of titanium, were 2mm in outer diameter and 5mm in length. Bone changes around the screws were assessed using in vivo microCT with a nominal isotropic resolution of 12mm (at 70 kV, 300 ms integration time, 1000 projections) at days 0, 3, 6, 9, 14, 20 and 27. Each measurement took approximately 30 min while the animal was anesthetised via isoflurane inhalation. After reconstruction, these data were registered in space. The screw was segmented and dilated to define a region surrounding the coating. Bone-implant contact (BIC) was defined as the bone volume fraction (BV/TV) within this region. The changes in bone structure were computed from the differences between two consecutive time points. After sacrifice, in each group six tibiae were prepared for histology and six were used for mechanical pullout of the screw from the tibia, then quantitative microbiological analysis was carried-out after homogenization of the bone sample and sonication of the screw. Results. In the control group, no animal showed an infection, while all animals in the infected group developed an infection. In the uninfected group, BIC increased from 35±5% to 55±10% between day 0 and day 27 (p<0.05); at day 27 pullout stiffness was 220±48 N/mm and the maximal force 120±16 N. The microstructural changes were most prominent between day 0 and day 14. In the infected group, BIC dramatically dropped to zero within 14 days and the animals were sacrificed. Histology revealed that in the infected group there was marked osteolysis, purulent inflammation and a fibrous capsule around the screws. The pullout stiffness and maximal force were not significant (respectively 39±54 N/mm and 12±16 N). While 1×10. 4. CFU were introduced at day 0, at day 27, microbiological analysis revealed 1×10. 6. CFU on the screws and 5×10. 5. CFU in the neighboring bone. Conclusion. High-resolution in vivo microCT shows in the current model a rapid progression of osteolysis. This new approach allows a better understanding of the changes in bone structure around S. aureus infected implants. It may be particularly useful in detecting low-grade infections, such as S. epidermidis infections in the same model


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 320 - 320
1 May 2006
Dhillon R Krebs J Theis J Aebli N
Full Access

Cementless implants have gained popularity in modern orthopaedic practice. The type implants and surface characteristics on fixation has been extensively investigated, however there is insufficient data on the effect of the host bone bed status on implant fixation. This study aims to determine if there is a correlation between the fixation strength of cementless press-fit implants and bone mineral density (BMD) of the host bone bed. Implants coated with pure titanium, Hydroxyapatite (HA) with or without Hyaluronic Acid (HY) and implants coated with bone growth factors – Bone Morphogenetic Protein 2 (BMP-2) were inserted into tibiae and femora of 32 skeletally mature ewes (109 implants) for a period of 1, 2 and 4 weeks. Mechanical pull-out testing was performed after each time interval to evaluate the ultimate load of failure (Nmm. −2. ). The BMD (gcm. −3. ) surrounding the implant site was measured using a CT scanner. The mean BMD (S.D.) was 1.515gcm. −3. (0.147gcm. −3. ). The mean (S.D.) mechanical pull-out strength at 1, 2 and 4 weeks was 0.37 (0.31), 3.14 (0.17) and 9.74 (2.31) Nmm. −2. respectively. The overall correlation co-efficient between BMD and pull out strength is 0.31. Early fixation strength of implants is independent of BMD, however, the strength of fixation increases with time in a ‘normal’ sheep population. This suggests that the fixation of implants is dependent on the type of implant and surface coating used rather than the density of the host bone bed


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 104 - 104
1 Feb 2017
Noble P Dua R Jones H Garrett K
Full Access

Background

Recent advances in materials and manufacturing processes for arthroplasty have allowed fabrication of intricate implant surfaces to facilitate bony attachment. However, refinement and evaluation of these new design strategies is hindered by the cost and complications of animal studies, particularly during early iterations in development process. To address this problem, we have constructed and validated an ex-vivo bone bioreactor culture system to enable empirical testing of candidate structures and materials. In this study, we investigated mineralization of a titanium wire mesh scaffold under both static and dynamic culturing using our ex vivo bioreactor system.

Methods

Cancellous cylindrical bone cores were harvested from bovine metatarsals and divided into five groups under different conditions. After incubation for 4 & 7 weeks, the viability of each bone sample was evaluated using Live-Dead assay and microscopic anatomy of cells were determined using histology stain H&E. Matrix deposits on the scaffolds were examined with scanning electron microscopy (SEM) while its chemical composition was measured using energy-dispersive x–ray spectroscopy (EDX).


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 156 - 157
1 May 2011
Wuestemann T Bastian A Schmidt W Cedermark C Streicher R Parvizi J Rothman R
Full Access

Introduction: Clinical experience has shown that addressing variations in bone morphology is important in the development of successful hip implant designs. Numerous studies of femoral bone morphology have been published utilizing various techniques. This study has developed a method which consistently measures large quantities of 3-dimensional digital femura geometry segmented from computed tomography (CT) scans and can accurately make anatomical measurements from these images

Methods: CT images of left femora on five hundred fifty six left femura (57% male, 43% female), consisting of 69% Caucasian, 16% Asian and 14% unknown were analyzed. The average age was 66 years, ranging from 40 to 93 years. Segmentation of the outer cortical, inner cortical, and marrow boundaries were consistently performed over all CT scans. The positions identified on the reference bone are transformed to the equivalent position on the clinical bone images, from which the dimensional data is extracted and stored. The mediolateral width (MLW), medial offset (MO) and lateral offset (LO) were measured in 10mm increments, ranging from 20mm above the lesser trochanter (LT) to 130mm below the lesser trochanter. The canal flare index was defined as a ratio of the mediolateral width at a section 20mm above the lesser trochanter to the mediolateral width at the isthmus level.

Results: The mean mediolateral width at 20mm above the lesser trochanter was 47.0 ± 4.5 (35.1–61.8; n=556). Noble reported 45.4 ± 5.3 (31.0–60.0; n=200), Husmann reported in a neck oriented study 46.3 ± 6.9 (27.6–63.6; n=310) and Laine reported 47.1 ± 4.9 (n=50). The mean medial offset at a section 20mm above the lesser trochanter was 25.1 ± 2.9 (16.7–33.4). In the study by Husmann, a mean of 25.0 ± 5.2 (9.4–45.5) was reported. The mean canal flare index was 4.49 ±.8. Noble reported a mean canal flare index of 3.80 ±.074, Husmann 3.81 ±.83 and Laine 4.3 ±.93.

Discussion: In general, the study showed minor differences to published data of proximal bone morphology. However, this more powerful study has shown that there is a higher mean canal flare index than determined by Noble and a similar mean canal flare index as determined by Laine. As reported by Laine, the canal flare index varies significantly with the placement of measurements in the canal. In this study the measurements were performed in a plane oriented by the femoral neck as a hip stem would be placed. The CFI over the isthmus width showed a greater correlation than previously shown by Noble. The novel software tool allows for anatomical measurements that can be applied to an unlimited population size enabling further applications and studies.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 401 - 401
1 Oct 2006
Ahmad M Nanda R Bajwa A Candal-Couto J Green S Hui A
Full Access

Aim: To investigate in vitro the mechanical stability of a locking compression plate (LCP) construct in a simulated diaphyseal fracture of the humerus at increasing distances between the plate and bone.

Materials & Method: A series of biomechanical in vitro experiments were performed using Composite Humerus Sawbone as the bone model. Osteotomy created in the mid-diaphyseal region. A 10mm osteotomy gap was bridged with a 7-hole 4.5 stainless steel plate with one of four methods: a control group consisted of a Dynamic Compression Plate applied flush to the bone and three study groups which comprised of a LCP applied flush to the bone, at 2mm and at 5mm from the bone. Standard AO technique used with locking head screws used for LCP fixation. Static and dynamic loading tests performed in a jig with the bone model fixed both proximally and distally. Samples were subjected to cyclical compression, compression load to failure, cyclical torque and torque to failure. Plastic deformation and failure was assessed. Scanning electron microscopy of the plate and screw surface allowed detailed inspection of micro-fracture in areas of fatigue.

Results: Consistent results were achieved in LCP constructs in which the plate was applied at or less than 2mm from the bone. When applied 5mm from the bone the LCP demonstrated significantly increased plastic deformation during cyclical compression and required lower loads to induce construct failure.

Conclusion: In our laboratory model a significant decrease in axial stiffness and torsional rigidity becomes evident at a distance of 5mm between plate and bone.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 26 - 26
17 Nov 2023
Zou Z Cheong VS Fromme P
Full Access

Abstract. Objectives. Young patients receiving metallic bone implants after surgical resection of bone cancer require implants that last into adulthood, and ideally life-long. Porous implants with similar stiffness to bone can promote bone ingrowth and thus beneficial clinical outcomes. A mechanical remodelling stimulus, strain energy density (SED), is thought to be the primary control variable of the process of bone growth into porous implants. The sequential process of bone growth needs to be taken into account to develop an accurate and validated bone remodelling algorithm, which can be employed to improve porous implant design and achieve better clinical outcomes. Methods. A bone remodelling algorithm was developed, incorporating the concept of bone connectivity (sequential growth of bone from existing bone) to make the algorithm more physiologically relevant. The algorithm includes adaptive elastic modulus based on apparent bone density, using a node-based model to simulate local remodelling variations while alleviating numerical checkerboard problems. Strain energy density (SED) incorporating stress and strain effects in all directions was used as the primary stimulus for bone remodelling. The simulations were developed to run in MATLAB interfacing with the commercial FEA software ABAQUS and Python. The algorithm was applied to predict bone ingrowth into a porous implant for comparison against data from a sheep model. Results. The accuracy of the predicted bone remodelling was verified for standard loading cases (bending, torsion) against analytical calculations. Good convergence was achieved. The algorithm predicted good bone remodelling and growth into the investigated porous implant. Using the standard algorithm without connectivity, bone started to remodel at locations unconnected to any bone, which is physiologically implausible. The implementation of bone connectivity ensures the gradual process of bone growth into the implant pores from the sides. The bone connectivity algorithm predicted that the full remodelling required more time (approximately 50% longer), which should be considered when developing post-surgical rehabilitation strategies for patients. Both algorithms with and without bone connectivity implementation converged to same final stiffness (less than 0.01% difference). Almost all nodes reached the same density value, with only a limited number of nodes (less than 1%) in transition areas with a strong density gradient having noticeable differences. Conclusions. An improved bone remodelling algorithm based on strain energy density that modelled the sequential process of bone growth has been developed and tested. For a porous metallic bone implant the same final bone density distribution as for the original adaptive elasticity theory was predicted, with a slower and more fidelic process of growth from existing surrounding bone into the porous implant. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 3 - 3
23 Feb 2023
Holzer L Finsterwald M Sobhi S Yates P
Full Access

This study aimed to analyze the effect of two different techniques of cement application: cement on bone surface (CoB) versus cement on bone surface and implant surface (CoBaI) on the short-term effect of radiolucent lines (RLL) in primary fully cemented total knee arthroplasties (TKA) with patella resurfacing. 379 fully cemented TKAs (318 patients) were included in this monocentric study. Preoperative and postoperative at week 4 and 12 month after surgery all patients had a clinical and radiological examination and were administered the Oxford Knee Score (OKS). Cement was applied in two different ways among the two study groups: cement on bone surface (CoB group) or cement on bone surface and implant surface (CoBaI group). The evaluation of the presence of RLL or osteolysis was done as previously described using the updated Knee Society Radiographic Evaluation System. The mean OKS and range of motion improved significantly in both groups at the 4-week and 12-month follow-up, with no significant difference between the groups (CoB vs. CoBaI). RLL were present in 4.7% in the whole study population and were significantly higher in the CoBaI group (10.5%) at the 4-week follow-up. At the 12-month follow-up RLL were seen in 29.8% of the TKAs in the CoBaI group, whereas the incidence was lower in the CoB group (24.0% (n.s.)). There were two revisions in each group. None of these due to aseptic loosening. Our study indicated that the application of bone cement on bone surface only might be more beneficial than onto the bone surface and onto the implant surface as well in respect to the short-term presence of RLL in fully cemented primary TKA. The long-term results will be of interest, especially in respect to aseptic loosening and might guide future directions of bone cement applications in TKA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 12 - 12
14 Nov 2024
Vautrin A Thierrin R Wili P Voumard B Rauber C Klingler S Chapuis V Varga P Zysset P
Full Access

Introduction. Achieving an appropriate primary stability after implantation is a prerequisite for the long-term viability of a dental implant. Virtual testing of the bone-implant construct can be performed with finite element (FE) simulation to predict primary stability prior to implantation. In order to be translated to clinical practice, such FE modeling must be based on clinically available imaging methods. The aim of this study was to validate an FE model of dental implant primary stability using cone beam computed tomography (CBCT) with ex vivo mechanical testing. Method. Three cadaveric mandibles (male donors, 87-97 years old) were scanned by CBCT. Twenty-three bone samples were extracted from the bones and conventional dental implants (Ø4.0mm, 9.5mm length) were inserted in each. The implanted specimens were tested under quasi-static bending-compression load (cf. ISO 14801). Sample-specific homogenized FE (hFE) models were created from the CBCT images and meshed with hexahedral elements. A non-linear constitutive model with element-wise density-based material properties was used to simulate bone and the implant was considered rigid. The experimental loading conditions were replicated in the FE model and the ultimate force was evaluated. Result. The experimental ultimate force ranged between 67 N and 789 N. The simulated ultimate force correlated better with the experimental ultimate force (R. 2. =0.71) than the peri-implant bone density (R. 2. =0.30). Conclusion. The developed hFE model was demonstrated to provide stronger prediction of primary stability than peri-implant bone density. Therefore, hFE Simulations based on this clinically available low-radiation imaging modality, is a promising technology that could be used in future as a surgery planning tool to assist the clinician in evaluating the load-bearing capacity of an implantation site. Acknowledgements. Funding: EU's Horizon 2020 grant No: 953128 (I-SMarD). Dental implants: THOMMEN Medical AG


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 61 - 61
1 Oct 2022
Fuglsang-Madsen A Henriksen NL Kvich LA Birch JKM Hartmann KT Bjarnsholt T Andresen TL Jensen LK Henriksen JR Hansen AE
Full Access

Aim. Several local antibiotic-eluting drug delivery systems have been developed to treat bacterial bone infections. However, available systems have significant shortcomings, including suboptimal drug-release profiles with a burst followed by subtherapeutic release, which may lead to treatment failure and selection for drug resistance. Here, we present a novel injectable, biocompatible, in situ-forming depot, termed CarboCells, which can be fine-tuned for the desired antibiotic-release profile. The CarboCell technology has flexible injection properties that allow surgeons to accurately place antibiotic-eluting depots within and surrounding infectious sites in soft tissue and bones. The CarboCell technology is furthermore compatible with clinical image-guided injection technologies. These studies aimed to determine the therapeutic potential of CarboCell formulations for treatment of implant-associated osteomyelitis by mono- and dual antimicrobial therapy. Methods. The solubility and stability of several antibiotics were determined in various CarboCell formulations, and in vitro drug release was characterized. Lead candidates for antimicrobial therapy were selected using a modified semi-solid biofilm model with 4-day-matured Staphylococcus aureus biofilm (osteomyelitis-isolate, strain S54F9). Efficacy was investigated in a rat implant-associated osteomyelitis model established in the femoral bone by intraosseous implantation of a stainless-steel pin with 4-day-old in vitro-matured S. aureus biofilm. CarboCells were injected subcutaneously at the femur, and antimicrobial efficacy was evaluated 7 days post-implantation. Lead formulations were subsequently tested in a well-established translational implant-associated tibial S. aureus osteomyelitis pig model. Infection was established for 7 days before revision surgery consisting of debridement, washing, implantation of a new stainless-steel pin, and injection of antibiotic-releasing CarboCells into the debrided cavity and in the surrounding bone- and soft-tissue. Seven days post-revision, pigs were euthanized, and samples were collected for microbial and histopathological evaluation. Results. Lead antimicrobial agents were soluble in high concentrations and were stable in CarboCell formulations. Three combinations completely eradicated bacteria in the in vitro semi-solid biofilm model. In the rat osteomyelitis model, CarboCell formulations of the lead combinations also eradicated bacteria in bone and implant in several rats and significantly reduced infection in all treated rats. In the pig model, CarboCell antimicrobial monotherapy demonstrated promising therapeutic efficacy, including complete eradication of infection in bone and implants in several pigs and significantly reduced bacterial burden in others. Conclusions. Using the CarboCell technology for antimicrobial delivery exert substantial loco-regional efficacy. The attractive sustained high-dose antibiotic release profile combined with the flexible injection technology allows surgeons to accurately place effective drug-eluting depots in key areas not accessible to competing technologies


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 130 - 130
4 Apr 2023
Shi Y Deganello D Xia Z
Full Access

Bone defects require implantable graft substitutes, especially porous and biodegradable biomaterial for tissue regeneration. The aim of this study was to fabricate and assess a 3D-printed biodegradable hydroxyapatite/calcium carbonate scaffold for bone regeneration. Materials and methods:. A 3D-printed biodegradable biomaterial containing calcium phosphate and aragonite (calcium carbonate) was fabricated using a Bioplotter. The physicochemical properties of the material were characterised. The materials were assessed in vitro for cytotoxicity and ostegenic potential and in vivo in rat intercondylar Φ3mm bone defect model for 3 months and Φ5mm of mini pig femoral bone defects for 6 months. The results showed that the materials contained hydroxyapatite and calcium carbonate, with the compression strength of 2.49± 0.2 MPa, pore size of 300.00 ± 41mm, and porosity of 40.±3%. The hydroxyapatite/aragonite was not cytotoxic and it promoted osteogenic differentiation of human umbilical cord matrix mesenchymal stem cells in vitro. After implantation, the bone defects were healed in the treatment group whereas the defect of controlled group with gelatin sponge implantation remained non-union. hydroxyapatite/aragonite fully integrated with host bone tissue and bridged the defects in 2 months, and significant biodegradation was followed by host new bone formation. After implantation into Φ5mm femoral defects in mini pigs hydroxyapatite/aragonite were completed degraded in 6 months and fully replaced by host bone formation, which matched the healing and degradation of porcine allogenic bone graft. In conclusion, hydroxyapatite/aragonite is a suitable new scaffold for bone regeneration. The calcium carbonate in the materials may have played an important role in osteogenesis and material biodegradation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 74 - 74
17 Apr 2023
Theodoridis K Hall T Munford M Van Arkel R
Full Access

The success of cementless orthopaedic implants relies on bony ingrowth and active bone remodelling. Much research effort is invested to develop implants with controllable surface roughness and internal porous architectures that encourage these biological processes. Evaluation of these implants requires long-term and costly animal studies, which do not always yield the desired outcome requiring iteration. The aim of our study is to develop a cost-effective method to prescreen design parameters prior to animal trials to streamline implant development and reduce live animal testing burden. Ex vivo porcine cancellous bone cylinders (n=6, Ø20×12mm) were extracted from porcine knee joints with a computer-numerically-controlled milling machine under sterile conditions within 4 hours of animal sacrifice. The bone discs were implanted with Ø6×12mm additive manufactured porous titanium implants and were then cultured for 21days. Half underwent static culture in medium (DMEM, 10% FBS, 1% antibiotics) at 37°C and 5% CO. 2. The rest were cultured in novel high-throughput stacked configuration in a bioreactor that simulated physiological conditions after surgery: the fluid flow and cyclic compression force were set at 10ml/min and 10–150 N (1Hz,5000 cycles/day) respectively. Stains were administered at days 7 and 14. Samples were evaluated with widefield microscopy, scanning electron microscopy (SEM) and with histology. More bone remodelling was observed on the samples cultured within the bioreactor: widefield imaging showed more remodelling at the boundaries between the implant-bone interface, while SEM revealed immature bone tissue integration within the pores of the implant. Histological analysis confirmed these results, with many more trabecular struts with new osteoid formation on the samples cultured dynamically compared to static ones. Ex vivo bone can be used to analyse new implant technologies with lower cost and ethical impact than animal trial. Physiological conditions (load and fluid flow) promoted bone ingrowth and remodelling


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 33 - 33
2 Jan 2024
Emonde C Reulbach M Evers P Behnsen H Nürnberger F Jakubowitz E Windhagen H
Full Access

According to the latest report from the German Arthroplasty Registry, aseptic loosening is the primary cause of implant failure following primary hip arthroplasty. Osteolysis of the proximal femur due to the stress-shielding of the bone by the implant causes loss of fixation of the proximal femoral stem, while the distal stem remains fixed. Removing a fixed stem is a challenging process. Current removal methods rely on manual tools such as chisels, burrs, osteotomes, drills and mills, which pose the risk of bone fracture and cortical perforation. Others such as ultrasound and laser, generate temperatures that could cause thermal injury to the surrounding tissues and bone. It is crucial to develop techniques that preserve the host bone, as its quality after implant removal affects the outcome of a revision surgery. A gentler removal method based on the transcutaneous heating of the implant by induction is proposed. By reaching the glass transition temperature (T. G. ) of the periprosthetic cement, the cement is expected to soften, enabling the implant to be gently pulled out. The in-vivo environment comprises body fluids and elevated temperatures, which deteriorate the inherent mechanical properties of bone cement, including its T. G. We aimed to investigate the effect of fluid absorption on the T. G. (ASTM E2716-09) and Vicat softening temperature (VST) (ISO 306) of Palacos R cement (Heraeus Medical GmbH) when dry and after storage in Ringer's solution for up to 8 weeks. Samples stored in Ringer's solution exhibited lower T. G. and VST than those stored in air. After 8 weeks, the T. G. decreased from 95.2°C to 81.5°C in the Ringer's group, while the VST decreased from 104.4°C to 91.9°C. These findings will be useful in the ultimate goal of this project which is to design an induction-based system for implant removal. Acknowledgements: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB/TRR-298-SIIRI – Project-ID 426335750


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 24 - 24
1 Dec 2022
Trisolino G Frizziero L Santi GM Alessandri G Liverani A Menozzi GC Depaoli A Martinelli D Di Gennaro GL Vivarelli L Dallari D
Full Access

Paediatric musculoskeletal (MSK) disorders often produce severe limb deformities, that may require surgical correction. This may be challenging, especially in case of multiplanar, multifocal and/or multilevel deformities. The increasing implementation of novel technologies, such as virtual surgical planning (VSP), computer aided surgical simulation (CASS) and 3D-printing is rapidly gaining traction for a range of surgical applications in paediatric orthopaedics, allowing for extreme personalization and accuracy of the correction, by also reducing operative times and complications. However, prompt availability and accessible costs of this technology remain a concern. Here, we report our experience using an in-hospital low-cost desk workstation for VSP and rapid prototyping in the field of paediatric orthopaedic surgery. From April 2018 to September 2022 20 children presenting with congenital or post-traumatic deformities of the limbs requiring corrective osteotomies were included in the study. A conversion procedure was applied to transform the CT scan into a 3D model. The surgery was planned using the 3D generated model. The simulation consisted of a virtual process of correction of the alignment, rotation, lengthening of the bones and choosing the level, shape and direction of the osteotomies. We also simulated and calculated the size and position of hardware and customized massive allografts that were shaped in clean room at the hospital bone bank. Sterilizable 3D models and PSI were printed in high-temperature poly-lactic acid (HTPLA), using a low-cost 3D-printer. Twenty-three operations in twenty patients were performed by using VSP and CASS. The sites of correction were: leg (9 cases) hip (5 cases) elbow/forearm (5 cases) foot (5 cases) The 3D printed sterilizable models were used in 21 cases while HTPLA-PSI were used in five cases. customized massive bone allografts were implanted in 4 cases. No complications related to the use of 3D printed models or cutting guides within the surgical field were observed. Post-operative good or excellent radiographic correction was achieved in 21 cases. In conclusion, the application of VSP, CASS and 3D-printing technology can improve the surgical correction of complex limb deformities in children, helping the surgeon to identify the correct landmarks for the osteotomy, to achieve the desired degree of correction, accurately modelling and positioning hardware and bone grafts when required. The implementation of in-hospital low-cost desk workstations for VSP, CASS and 3D-Printing is an effective and cost-advantageous solution for facilitating the use of these technologies in daily clinical and surgical practice


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 66 - 66
1 Dec 2022
Martin R Matovinovic K Schneider P
Full Access

Ligament reconstruction following multi-ligamentous knee injuries involves graft fixation in bone tunnels using interference screws (IS) or cortical suspensory systems. Risks of IS fixation include graft laceration, cortical fractures, prominent hardware, and inability to adjust tensioning once secured. Closed loop suspensory (CLS) fixation offers an alternative with fewer graft failures and improved graft-to-tunnel incorporation. However, graft tensioning cannot be modified to accommodate errors in tunnel length evaluation. Adjustable loop suspensory (ALS) devices (i.e., Smith & Nephew Ultrabutton) address these concerns and also offer the ability to sequentially tighten each graft, as needed. However, ALS devices may lead to increased graft displacement compared to CLS devices. Therefore, this study aims to report outcomes in a large clinical cohort of patients using both IS and CLS fixation. A retrospective review of radiographic, clinical, and patient-reported outcomes following ligament reconstruction from a Level 1 trauma centre was completed. Eligible patients were identified via electronic medical records using ICD-10 codes. Inclusion criteria were patients 18 years or older undergoing ACL, PCL, MCL, and/or LCL reconstruction between January 2018 and 2020 using IS and/or CLS fixation, with a minimum of six-month post-operative follow-up. Exclusion criteria were follow-up less than six months, incomplete radiographic imaging, and age less than 18 years. Knee dislocations (KD) were classified using the Schenck Classification. The primary outcome measure was implant removal rate. Secondary outcomes were revision surgery rate, deep infection rate, radiographic fixation failure rate, radiographic malposition, Lysholm and Tegner scores, clinical graft failure, and radiographic graft failure. Radiographic malposition was defined as implants over 5 mm off bone or intraosseous deployment of the suspensory fixation device. Clinical graft failure was defined as a grade II or greater Lachman, posterior drawer, varus opening at 20° of knee flexion, and/or valgus opening at 20° of knee flexion. Radiographic failure was defined when over 5 mm, 3.2 mm, and/or 2.7 mm of side-to-side difference occurred using PCL gravity stress views, valgus stress views, and/or varus stress views, respectively. Descriptive statistics were used. Sixty-three consecutive patients (mean age = 41 years, range = 19-58) were included. A total of 266 CLS fixation with Ultrabuttons and 135 IS were used. Mean follow-up duration was 383 days. Most injuries were KD type II and III. Graft revision surgery rate was 1.5%. Intraosseous deployment occurred in 6.2% and 17% had implants secured in soft tissue, rather than on bone. However, the implant removal rate was only 6.2%. Radiographic PCL gravity stress views demonstrated an average of 1.2 mm of side-to-side difference with 6.2% meeting criteria for radiographic failure. A single patient met radiographic failure criteria for collateral grafts. Mean Lysholm and Tegner scores were 87.3 and 4.4, respectively, with follow-up beyond one year. Both IS and CLS fixation demonstrate an extremely low revision surgery rate, a high rate of implant retention, excellent radiographic stability, and satisfactory patient-reported outcome scores. Incorrect implant deployment was seen in a total of 17% of patients, yet none required implant removal. A single patient required graft revision due to implant failure


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 28 - 28
1 Oct 2022
Mannala G Rupp M Alt V
Full Access

Aim. Galleria mellonella larvae is a well-known insect infection model that has been used to test the virulence of bacterial and fungal strains as well as for the high throughput screening of antimicrobial compounds against infections. Recently, we have developed insect infection model G. mellonella larvae to study implant associated biofilm infections using small K-wire as implant material. Here, we aimed to further expand the use of G. mellonella to test other materials such as bone cement with combination of gentamicin to treat implant-associated infections. Method. The poly methyl methacrylate (PMMA) with and without gentamicin and liquid methyl methacrylate (MMA) were kindly provided by Heraeus Medical GmbH, Wehrheim. To make the bone cement implants as cubes, Teflon plate (Karl Lettenbauer, Erlangen) with specified well size was used. The Radiopaque polymer and monomer were mixed well in a bowl, applied over on to the Teflon plate and pressed with spatula to form fine and uniform cubes. After polymerization, the bone cement implants were taken out of the Teflon well plate with the help of pin. For the infection process, bone cement cubes were pre-incubated with S. aureus EDCC 5055 culture at 5×10. 6. CFU/ml for 30 min at 150 rpm shaking conditions. Later, these implants were washed with 10ml PBS and implanted in the larvae as mentioned. Survival of the larvae were observed at 37°C in an incubator. To analyze the susceptibility of the bacterial infections towards gentamicin, survival of the larvae compared with control group implanted only with bone cement. The effect of gentamicin was also measured in terms of S. aureus load in larvae on 2. nd. day. SEM analysis was performed to see the effect of gentamicin on biofilm formation on bone cement. Results. Our experiments established the G. mellonella as an excellent model to screen bone cement with antimicrobial compounds against bacterial infections. The gentamicin bone cement samples showed excellent S. aureus bacterial load reduction after the implantation in G. mellonella model. The bone cement with gentamicin showed better survival of larvae infected with S. aureus compared to control. Finally, the gentamicin also affected the biofilm formation on the bone cement surface with S. aureus. Conclusions. Thus, our work showed G. mellonella is a rapid, cheap economical pre-clinical model to study the bone cement associate bacterial infections as well as screening of the various antimicrobial compounds