Advertisement for orthosearch.org.uk
Results 1 - 20 of 213
Results per page:
Bone & Joint Research
Vol. 11, Issue 4 | Pages 189 - 199
13 Apr 2022
Yang Y Li Y Pan Q Bai S Wang H Pan X Ling K Li G

Aims. Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named ‘tibial cortex transverse transport’ (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model. Methods. A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes. Results. Gross and histological examinations showed that TTT technique accelerated wound closure and enhanced the quality of the newly formed skin tissues. In the TTT group, haematoxylin and eosin (H&E) staining demonstrated a better epidermis and dermis recovery, while immunohistochemical staining showed that TTT technique promoted local collagen deposition. The TTT technique also benefited to angiogenesis and immunomodulation. In the TTT group, blood flow in the wound area was higher than that of other groups according to laser speckle imaging with more blood vessels observed. Enhanced neovascularization was seen in the TTT group with double immune-labelling of CD31 and α-Smooth Muscle Actin (α-SMA). The number of M2 macrophages at the wound site in the TTT group was also increased. Conclusion. The TTT technique accelerated wound healing through enhanced angiogenesis and immunomodulation. Cite this article: Bone Joint Res 2022;11(4):189–199


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims. Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. Methods. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses. Results. At 12 weeks, the VBPC group significantly increased new bone formation volume compared with the other groups. Biomechanical testing demonstrated higher torque strength in the VBPC group. Notably, the haematoxylin and eosin, Masson’s trichrome, and immunohistochemistry-stained histological results revealed that VBPC promoted neovascularization and new bone formation in the spine fusion areas. Conclusion. The tissue-engineered VBPC showed great capability in promoting angiogenesis and osteogenesis in vivo. It may provide a novel approach to create a superior blood supply and nutritional environment to overcome the deficits of current artificial bone graft substitutes. Cite this article: Bone Joint Res 2023;12(12):722–733


Bone & Joint Research
Vol. 7, Issue 6 | Pages 406 - 413
1 Jun 2018
Shabestari M Kise NJ Landin MA Sesseng S Hellund JC Reseland JE Eriksen EF Haugen IK

Objectives. Little is known about tissue changes underlying bone marrow lesions (BMLs) in non-weight-bearing joints with osteoarthritis (OA). Our aim was to characterize BMLs in OA of the hand using dynamic histomorphometry. We therefore quantified bone turnover and angiogenesis in subchondral bone at the base of the thumb, and compared the findings with control bone from hip OA. Methods. Patients with OA at the base of the thumb, or the hip, underwent preoperative MRI to assess BMLs, and tetracycline labelling to determine bone turnover. Three groups were compared: trapezium bones removed by trapeziectomy from patients with thumb base OA (n = 20); femoral heads with (n = 24); and those without (n = 9) BMLs obtained from patients with hip OA who underwent total hip arthroplasty. Results. All trapezium bones demonstrated MRI-defined BMLs. Compared with femoral heads without BMLs, the trapezia demonstrated significantly higher bone turnover (mean . sd. 0.2 (0.1) versus 0.01 (0.01) µm. 3. /µm. 2. /day), mineralizing surface (18.5% (13.1) versus 1.4% (1.3)) and vascularity (5.2% (1.1) versus 1.2% (0.6)). Femoral heads with BMLs exhibited higher bone turnover (0.3 (0.2) versus 0.2 (0.1) µm. 3. /µm. 2. /day), a higher mineralization rate (26.6% (10.6) versus 18.6% (11.9)) and greater trabecular thickness (301.3 µm (108) versus 163.6 µm (24.8)) than the trapezia. Conclusion. Bone turnover and angiogenesis were enhanced in BMLs of both the thumb base and hip OA, of which the latter exhibited the highest bone turnover. Thus, the increase in bone turnover in weight-bearing joints like the hip may be more pronounced than less mechanically loaded osteoarthritic joints demonstrating BMLs. The histological changes observed may explain the water signal from BMLs on MRI. Cite this article: M. Shabestari, N. J. Kise, M. A. Landin, S. Sesseng, J. C. Hellund, J. E. Reseland, E. F. Eriksen, I. K. Haugen. Enhanced angiogenesis and increased bone turnover characterize bone marrow lesions in osteoarthritis at the base of the thumb. Bone Joint Res 2018;7:406–413. DOI: 10.1302/2046-3758.76.BJR-2017-0083.R3


Bone & Joint Research
Vol. 9, Issue 3 | Pages 99 - 107
1 Mar 2020
Chang C Jou I Wu T Su F Tai T

Aims. Cigarette smoking has a negative impact on the skeletal system, causes a decrease in bone mass in both young and old patients, and is considered a risk factor for the development of osteoporosis. In addition, it disturbs the bone healing process and prolongs the healing time after fractures. The mechanisms by which cigarette smoking impairs fracture healing are not fully understood. There are few studies reporting the effects of cigarette smoking on new blood vessel formation during the early stage of fracture healing. We tested the hypothesis that cigarette smoke inhalation may suppress angiogenesis and delay fracture healing. Methods. We established a custom-made chamber with airflow for rats to inhale cigarette smoke continuously, and tested our hypothesis using a femoral osteotomy model, radiograph and microCT imaging, and various biomechanical and biological tests. Results. In the smoking group, Western blot analysis and immunohistochemical staining revealed less expression of vascular endothelial growth factor (VEGF) and von Willebrand factor (vWF). The smoking group also had a lower microvessel density than the control group. Image and biochemical analysis also demonstrated delayed bone healing. Conclusion. Cigarette smoke inhalation was associated with decreased expression of angiogenic markers in the early bone healing phase and with impaired bone healing. Cite this article:Bone Joint Res. 2020;9(3):99–107


Bone & Joint Research
Vol. 10, Issue 7 | Pages 411 - 424
14 Jul 2021
Zhao D Ren B Wang H Zhang X Yu M Cheng L Sang Y Cao S Thieringer FM Zhang D Wan Y Liu C

Aims

The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration.

Methods

IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 25 - 25
1 Nov 2021
Timmen M Arras C Bixel G Adams RH Stange R
Full Access

Introduction and Objective. Neoangiogenesis drives the replacement of mineralized cartilage by trabecular bone during bone growth regulated by molecules like e.g. VEGF, OPG and RANKL and the close interaction of progenitors of osteoblasts, chondrocytes, endothelial cells and osteoclasts/chondroclasts. The Heparan sulfate proteoglycan Syndecan-1 (Sdc-1) plays a role in the interaction between osteoclasts and osteoblasts and the development of blood vessels. As the processes of osteogenesis and angiogenesis are closely related to each other in bone, we expected Sdc-1 to have an influence on vessel structure during aging. Therefore, angiogenesis at the growth plate in mice of different ages was compared and the influence of Syndecan-1 deficiency was characterized. Materials and Methods. Animals: C57BL/6 (WT) and Sdc1−/− mice were used for native bone analysis at 4, 12 and 18 month age. Femura were dissected, cryoprotected and embedded. Histology: Embedded bones were sectioned into 80um thick slices so that the 3D network of the vascularization of the bone could be visualized using an anti-Endomucin antibody and DAPI as counter staining. For semi-automatical quantification of the vessel bulbs we used a custom made software. In vitro angiogenesis: For aortic ring assay, aortic tissue was isolated from 4 month old mice, cut into 0.5mm rings and embedded in collagen type I matrix. Microvessel outgrowth was quantified after 6 days of culture. Results. We verified our custom-made software using slices of WT mice and showed that there is no variation of the number of bulbs with regard to the width of the growth plate in periphery versus center zones in all age groups which indicates a homogeneous distribution of angiogenesis throughout the interface of cartilage to newly forming bone. Furthermore, in both, WT and Sdc-1 deficient mice the number of bulbs decreased significantly with age. However, Sdc-1 knockout mice at the age of 4 and 12 month showed a highly significant decrease in angiogenesis close to the growth plate compared to WT mice, whereas in older mice these differences were gone. Quantification of microvessel outgrowth of aortic tissue revealed a significant decrease in number of vessels from rings taken from Syndecan-1 deficient mice compared to WT mice. Conclusions. Syndecan-1 has a significant impact on neoangiogenesis in vitro and in vivo during aging as demonstrated at the chondro-osseous border of the native bone, emphasizing the importance to further characterize the function of Syndecan-1 regulated processes during enchondral ossification


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 48 - 48
4 Apr 2023
Yang Y Li Y Pan Q Wang H Bai S Pan X Ling K Li G
Full Access

Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remain a challenge. A novel surgical technique named Tibial Cortex Transverse Transport has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In present study, we aimed to explore the wound healing effects after undergoing this novel technique via multiple ways. A novel rat model of Tibial Cortex Transverse Transport was established with a designed external fixator and effects on wound healing were investigated. All rats were randomized into 3 groups, with 12 rats per group: sham group (negative control), fixator group (positive control) and Tibial Cortex Transverse Transport group. Laser speckle perfusion imaging, vessel perfusion, histology and immunohistochemistry were used to evaluate the wound healing processes. Gross and histological examinations showed that Tibial Cortex Transverse Transport technique accelerated wound closure and enhanced the quality of the newly formed skin tissues. In Tibial Cortex Transverse Transport group, HE staining demonstrated a better epidermis and dermis recovery, while immune-histochemical staining showed that Tibial Cortex Transverse Transport technique promoted local collagen deposition. Tibial Cortex Transverse Transport technique also benefited to angiogenesis and immunomodulation. In Tibial Cortex Transverse Transport group, blood flow in the wound area was higher than that ofother groups according to laser speckle imaging with more blood vessels observed. Enhanced neovascularization was seen in the Tibial Cortex Transverse Transport group with double immune-labelling of CD31 and α-SMA. The M2 macrophages at the wound site in the Tibial Cortex Transverse Transport group was also increased. Tibial cortex transverse transport technique accelerated wound healing through enhanced angiogenesis and immunomodulation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 141 - 141
4 Apr 2023
Timmen M Arras C Roters N Kronenberg D Bixel M Adams R Stange R
Full Access

Neoangiogenesis drives the replacement of mineralised cartilage by trabecular bone during bone growth regulated by molecules like e.g. VEGF, OPG and RANKL. The Heparan sulfate proteoglycan Syndecan-1 (Sdc1) plays a role in the interaction of osteoclasts and osteoblasts and the development of blood vessels. We expected Sdc1 to have an influence on bone structure and vessel development. Therefore, bone structure and angiogenesis at the growth plate in mice was compared and the influence of Syndecan-1 deficiency was characterised. Animals: Femura of male and female C57BL/6 WT (5♀, 6♂) and Sdc1-/- (9♀, 5♂) mice were used for native bone analysis at 4 month age. Histology: Bone structure was analysed using microCT scans with a resolution of 9µm. Vascularisation was visualised using an anti-Endomucin antibody in 80µm thick cryosections. In vitro angiogenesis: Bone marrow isolates were used to generate endothelial progenitor cells by sequential cultivation on fibronectin. Microvessel development was analysed 4h after plating on matrigel. Bone structure in male Sdc1 deficient mice was significantly reduced compare to male WT, whereas female mice of both genotypes did not differ. Sdc1 deficient mice at the age of 4 month showed a high decrease in the number of vessel bulbs at the chondro-osseous border (growth plate) compared to WT mice. However, no sex related differences were shown. Quantification of microvessel outgrowth of endothelial cells revealed a decreased amount of sprouting, but increased length of microvessels of Sdc1-/- cells compared to WT. Syndecan-1 has a significant impact on neoangiogenesis at the chondro-osseous border of the native bone, but the impact of Syndecan-1 deficiency on the loss of bone structure was significantly higher in male mice. This emphasises the importance to further characterise the function of Syndecan-1 regulated processes during enchondral ossification in a sex dependent manner


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 114 - 114
2 Jan 2024
Fiordalisi M Sousa I Barbosa M Gonçalves R Caldeira J
Full Access

Intervertebral disc (IVD) degeneration is the most frequent cause of Low Back Pain (LBP) affecting nearly 80% of the population [1]. Current treatments fail to restore a functional IVD or to provide a long-term solution, so, there is an urgent need for novel therapeutic strategies. We have defined the IVD extracellular matrix (ECM) profile, showing that the pro-regenerative molecules Collagen type XII and XIV, are uniquely expressed during fetal stages [2]. Now we propose the first fetal injectable biomaterial to regenerate the IVD. Fetal decellularized IVD scaffolds were recellularized with adult IVD cells and further implanted in vivo to evaluate their anti-angiogenic potential. Young decellularized IVD scaffolds were used as controls. Finally, a large scale protocol to produce a stable, biocompatible and easily injectable fetal IVD-based hydrogel was developed. Fetal scaffolds were more effective at promoting Aggrecan and Collagen type II expression by IVD cells. In a Chorioallantoid membrane assay, only fetal matrices showed an anti-angiogenic potential. The same was observed in vivo when the angiogenesis was induced by human NP cells. In this context, human NP cells were more effective in GAG synthesis within a fetal microenvironment. Vaccum-assisted perfusion decellularized IVDs were obtained, with high DNA removal and sGAG retention. Hydrogel pre-solution passed through 21-30G needles. IVD cells seeded on the hydrogels initially decreased metabolic activity, but increased up to 70% at day 7, while LDH assay revealed cytotoxicity always below 30%. This study will open new avenues for the establishment of a disruptive treatment for IVD degeneration with a positive impact on the angiogenesis associated with LBP, and on the improvement of patients’ quality of life. Acknowledgements: Financial support was obtained from EUROSPINE, ON Foundation and FCT (Fundação para a Ciência e a Tecnologia)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 140 - 140
2 Jan 2024
Banfi A
Full Access

Bone regeneration is an area of acute medical need, but its clinical success is hampered by the need to ensure rapid vascularization of osteogenic grafts. Vascular Endothelial Growth Factor (VEGF) is the master regulator of vascular growth and during bone development angiogenesis and osteogenesis are physiologically coupled through so-called angiocrine factors produced by blood vessels. However, how to exploit this process for therapeutic bone regeneration remains a challenge (1). Here we will describe recent work aiming at understanding the cross-talk between vascular growth and osteogenesis under conditions relevant for therapeutic bone regeneration. To this end we take advantage of a unique platform to generate controlled signalling microenvironments, by the covalent decoration of fibrin matrices with tunable doses and combinations of engineered growth factors. The combination of human osteoprogenitors and hydroxyapatite in these engineered fibrin matrices provides a controlled model to investigate how specific molecular signals regulate vascular invasion and bone formation in vivo. In particular, we found that:. 1). Controlling the distribution of VEGF protein in the microenvironment is key to recapitulate its physiologic function to couple angiogenesis and osteogenesis (2);. 2). Such coupling is exquisitely dependent on VEGF dose and on a delicate equilibrium between opposing effects. A narrow range of VEGF doses specifically activates Notch1 signaling in invading blood vessels, inducing a pro-osteogenic functional state called Type H endothelium, that promotes differentiation of surrounding mesenchymal progenitors. However, lower doses are ineffective and higher ones paradoxically inhibit both vascular invasion and bone formation (Figure 1) (3);. 3). Semaphorin3a (Sema3a) acts as a novel pro-osteogenic angiocrine factor downstream of VEGF and it mediates VEGF dose-dependent effects on both vascular invasion and osteogenic progenitor stimulation. In conclusion, vascularization of osteogenic grafts is not simply necessary in order to enable progenitor survival. Rather, blood vessels can actively stimulate bone regeneration in engineered grafts through specific molecular signals that can be harnessed for therapeutic purposes. Acknowledgements: This work was supported in part by the European Union Horizon 2020 Program (Grant agreement 874790 – cmRNAbone). For any figures and tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 88 - 88
2 Jan 2024
Kim M Kim, K
Full Access

There is still no consensus on which concentration of mesenchymal stem cells (MSCs) to use for promoting fracture healing in a rat model of long bone fracture. To assess the optimal concentration of MSCs for promoting fracture healing in a rat model. Wistar rats were divided into four groups according to MSC concentrations: Normal saline (C), 2.5 × 106 (L), 5.0 × 106 (M), and 10.0 × 106 (H) groups. The MSCs were injected directly into the fracture site. The rats were sacrificed at 2 and 6 자 post-fracture. New bone formation [bone volume (BV) and percentage BV (PBV)] was evaluated using micro-computed tomography (CT). Histological analysis was performed to evaluate fracture healing score. The protein expression of factors related to MSC migration [stromal cell-derived factor 1 (SDF-1), transforming growth factor-beta 1 (TGF-β1)] and angiogenesis [vascular endothelial growth factor (VEGF)] was evaluated using western blot analysis. The expression of cytokines associated with osteogenesis [bone morphogenetic protein-2 (BMP-2), TGF-β1 and VEGF] was evaluated using real-time polymerase chain reaction. Micro-CT showed that BV and PBV was significantly increased in groups M and H compared to that in group C at 6 wk post-fracture (P = 0.040, P = 0.009; P = 0.004, P = 0.001, respectively). Significantly more cartilaginous tissue and immature bone were formed in groups M and H than in group C at 2 and 6 wk post-fracture (P = 0.018, P = 0.010; P = 0.032, P = 0.050, respectively). At 2 wk post fracture, SDF-1, TGF-β1 and VEGF expression were significantly higher in groups M and H than in group L (P = 0.031, P = 0.014; P < 0.001, P < 0.001; P = 0.025, P < 0.001, respectively). BMP-2 and VEGF expression were significantly higher in groups M and H than in group C at 6 wk postfracture (P = 0.037, P = 0.038; P = 0.021, P = 0.010). Compared to group L, TGF-β1 expression was significantly higher in groups H (P = 0.016). There were no significant differences in expression levels of chemokines related to MSC migration, angiogenesis and cytokines associated with osteogenesis between M and H groups at 2 and 6 wk post-fracture. The administration of at least 5.0 × 106 MSCs was optimal to promote fracture healing in a rat model of long bone fractures


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 3 - 3
1 Mar 2021
Ge S Hadidi L Comeau-Gauthier M Ramirez-GarciaLuna J Merle G Harvey E
Full Access

Fracture non-union can be as high as 20% in certain clinical scenarios and has a high associated socioeconomic burden. Boron has been shown to regulate the Wnt/β-catenin pathway in other bodily processes. However, this pathway is also critical for bone healing. Here we aim to demonstrate that the local delivery of boric acid can accelerate bone healing, as well as to elucidate how boric acid, via the regulationtheWnt/β-catenin pathway, impacts theosteogenic response of bone-derived osteoclasts and osteoblasts during each phase of bone repair. Bilateral femoral cortical defects were created in 32 skeletally mature C57 mice. On the experimental side, boric acid (8mg/kg concentration) was injected locally at the defect site whereas on the control side, saline was used. Mice were euthanized at 7, 14, and 28 days. MicroCT was used to quantify bone regeneration at the defect. Histological staining for ALP and TRAP was used to quantify osteoblast and osteoclast activity respectively. Immunohistochemical antibodies, β-catenin and CD34 were used to quantify active β-catenin levels and angiogenesis respectively. Sclerostin and GSK3β were also quantified and are both inhibitors of the wnt signaling pathway via degradation and inactivation of β-catenin. The boron group exhibited higher bone volume and trabecular thickness at the defect site by 28 days on microCT. ALP activity was significantly higher in boron group at 7 days whereas boron had no effect on TRAP activity. Additionally, CD34 staining revealed increased angiogenesis at 14 days in boron treated groups. β-catenin activity on immunohistochemistry was significantly higher in the boron group at 7 days, GSK3β was significantly higher in the boron group at 14 days and Sclerostin was significantly higher in the boron group at 28 days. Boron appears to increase osteoblast activity at the earlier phases of healing. The corresponding early increase in β-catenin along with ALP likely supports that boron increases osteoblast activity via the wnt/β-catenin pathway. Increased angiogenesis at 14 days could be a separate mechanism increasing bone formation independent of wnt/β-catenin activation. Neither GSK3β or Sclerostin levels correlated with β-catenin activity therefore boron likely increases β-catenin through a mechanism independent of both GSK3β and Sclerostin. The addition of this inexpensive and widely available ion could potentially become a non-invasive, cost-effective treatment modality to augment fracture healing and decrease non-union rates in high risk patients


Bone & Joint Research
Vol. 10, Issue 2 | Pages 122 - 133
1 Feb 2021
He CP Jiang XC Chen C Zhang HB Cao WD Wu Q Ma C

Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article: Bone Joint Res 2021;10(2):122–133


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 127 - 127
2 Jan 2024
Moschini G
Full Access

Tendinopathy is the most common form of chronic tendon disorders, accounting for up 30% of all musculoskeletal clinic visits [1]. In tendon disease, the largely avascular tendon tissue often becomes hypervascularized and fibrotic [2]. As blood vessel growth and angiogenic signaling molecules are often induced by the lack of adequate nutrients and oxygen, hypoxic signaling is speculated to be a root cause of tendon neovascularization and tendinopathy [3,4,5]. However, how the vascular switch is initiated in tendons, and how vascularization contributes to tendon pathology remains unknown. In this talk, we provide evidence that HIF-1α is implicated in tendon disease and HIF-1α stabilization in human tendon cells induces vascular recruitment of endothelial cells via VEGFa secretion. More interesting, HIF-1α stabilization in tendon cells in vivo, seems to recapitulate all main features of fibrotic human tendon disease, including vascular ingrowth, matrix disorganization, changes in tissue mechanics, cell proliferation and innervation. Surprisingly, in vivo knock-out of VEGFa rescued angiogenesis in the tendon core but it did not affect tendon mechanical properties and tissue pathophysiological changes, suggesting that blood vessels ingrowth might not be a primary cause but a consequence of HIF-1α activation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 25 - 25
2 Jan 2024
Saldaña L Vilaboa N García-Rey E
Full Access

The pathophysiological basis of alterations in trabecular bone of patients with osteonecrosis of the femoral head (ONFH) remains unclear. ONFH has classically been considered a vascular disease with secondary changes in the subchondral bone. However, there is increasing evidence suggesting that ONFH could be a bone disease, since alterations in the functionality of bone tissue distant from the necrotic lesion have been observed. We comparatively studied the transcriptomic profile of trabecular bone obtained from the intertrochanteric region of patients with ONFH without an obvious aetiological factor, and patients with osteoarthritis (OA) undergoing total hip replacement in our Institution. To explore the biological processes that could be affected by ONFH, we compared the transcriptomic profile of trabecular bone from the intertrochanteric region and the femoral head of patients affected by this condition. Differential gene expression was studied using an Affymetrix microarray platform. Transcriptome analysis showed a differential signature in trabecular bone from the intertrochanteric region between patients with ONFH and those with OA. The gene ontology analyses of the genes overexpressed in bone tissue of patients with ONFH revealed a range of enriched biological processes related to cell adhesion and migration and angiogenesis. In contrast, most downregulated transcripts were involved in cell division. Trabecular bone in the intertrochanteric region and in the femoral head also exhibited a differential expression profile. Among the genes differentially expressed, we highlighted those related with cytokine production and immune response. This study identified a set of differently expressed genes in trabecular bone of patients with idiopathic ONFH, which might underlie the pathophysiology of this condition. Acknowledgements: This work was supported by grants PI18/00643 and PI22/00939 from ISCIII-FEDER, Ministerio de Ciencia, Innovación y Universidades (MICINN)-AES


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 36 - 36
2 Jan 2024
Bagur-Cardona S Perez-Romero K Stiliyanov K Calvo J Gayà A Barceló-Coblijn G Rodriguez RM Gomez-Florit M
Full Access

Macrophages (Mφ) are immune cells that play a crucial role in both innate and adaptive immunity as they are involved in a wide range of physiological and pathological processes. Depending on the microenvironment and signals present, Mφ can polarize into either M1 or M2 phenotypes, with M1 macrophages exhibiting pro-inflammatory and cytotoxic effects, while M2 macrophages having immunosuppressive and tissue repair properties. Macrophages have been shown to play key roles in the development and progression or inhibition of various diseases, including cancer. For example, macrophages can stimulate tumor progression by promoting immunosuppression, angiogenesis, invasion, and metastasis. This work aimed to investigate the effect of extracellular vesicles (EVs)-derived from polarized macrophages on an osteosarcoma cell line. Monocytes were extracted from buffy coats and cultured in RPMI medium with platelet lysate or M-CSF. After 6 days of seeding, Mφ were differentiated into M1 and M2 with INF-γ/LPS and IL-4/IL-13, respectively. The medium with M1 or M2 derived EVs was collected and EVs were isolated by differential centrifugation and size exclusion chromatography and its morphology and size were characterized with SEM and NTA, respectively. The presence of typical EVs markers (CD9, CD63) was assessed by Western Blot. Finally, EVs from M1 or M2-polarized Mφ were added onto osteosarcoma cell cultures and their effect on cell viability and cell cycle, proliferation, and gene expression was assessed. The EVs showed the typical shape, size and surface markers of EVs. Overall, we observed that osteosarcoma cells responded differentially to EVs isolated from the M1 and M2-polarized Mφ. In summary, the use of Mφ-derived EVs for the treatment of osteosarcoma and other cancers deserves further study as it could benefit from interesting traits of EVs such as low immunogenicity, nontoxicity, and ability to pass through tissue barriers. Acknowledgements: Carlos III Health Institute and the European Social Fund for contract CP21/00136 and project PI22/01686


Bone & Joint Research
Vol. 6, Issue 5 | Pages 277 - 283
1 May 2017
Yoshikawa M Nakasa T Ishikawa M Adachi N Ochi M

Objectives. Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine. Methods. Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs). Results. The supernatant contained several GFs/CKs, with especially high levels of basic fibroblast growth factor, and CD34+ cells as the stem/progenitor cell fraction. With regard to biological potential, we confirmed that cell proliferation, osteoinduction, and angiogenesis in hMSCs and HUVECs were enhanced by the supernatant. Conclusions. The current study demonstrates the potential of a new point-of-care strategy for regenerative medicine using skeletal muscle supernatant. This attractive approach and readily-available material could be a promising option for tissue repair/regeneration in the clinical setting. Cite this article: M. Yoshikawa, T. Nakasa, M. Ishikawa, N. Adachi, M. Ochi. Evaluation of autologous skeletal muscle-derived factors for regenerative medicine applications. Bone Joint Res 2017;6:277–283. DOI: 10.1302/2046-3758.65.BJR-2016-0187.R1


Bone & Joint Research
Vol. 10, Issue 1 | Pages 41 - 50
1 Jan 2021
Wong RMY Choy VMH Li J Li TK Chim YN Li MCM Cheng JCY Leung K Chow SK Cheung WH

Aims. Fibrinolysis plays a key transition step from haematoma formation to angiogenesis and fracture healing. Low-magnitude high-frequency vibration (LMHFV) is a non-invasive biophysical modality proven to enhance fibrinolytic factors. This study investigates the effect of LMHFV on fibrinolysis in a clinically relevant animal model to accelerate osteoporotic fracture healing. Methods. A total of 144 rats were randomized to four groups: sham control; sham and LMHFV; ovariectomized (OVX); and ovariectomized and LMHFV (OVX-VT). Fibrinolytic potential was evaluated by quantifying fibrin, tissue plasminogen activator (tPA), and plasminogen activator inhibitor-1 (PAI-1) along with healing outcomes at three days, one week, two weeks, and six weeks post-fracture. Results. All rats achieved healing, and x-ray relative radiopacity for OVX-VT was significantly higher compared to OVX at week 2. Martius Scarlet Blue (MSB) staining revealed a significant decrease of fibrin content in the callus in OVX-VT compared with OVX on day 3 (p = 0.020). Mean tPA from muscle was significantly higher for OVX-VT compared to OVX (p = 0.020) on day 3. Mechanical testing revealed the mean energy to failure was significantly higher for OVX-VT at 37.6 N mm (SD 8.4) and 71.9 N mm (SD 30.7) compared with OVX at 5.76 N mm (SD 7.1) (p = 0.010) and 17.7 N mm (SD 11.5) (p = 0.030) at week 2 and week 6, respectively. Conclusion. Metaphyseal fracture healing is enhanced by LMHFV, and one of the important molecular pathways it acts on is fibrinolysis. LMHFV is a promising intervention for osteoporotic metaphyseal fracture healing. The improved mechanical properties, acceleration of fracture healing, and safety justify its role into translation to future clinical studies. Cite this article: Bone Joint Res 2021;10(1):41–50


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 126 - 126
2 Jan 2024
Escudero-Duch C Serrano-Yamba R Sánchez-Casanova S Falguera-Uceda M Yus C Lerma-Juárez M Arruebo M Vilaboa N
Full Access

In this work, we combined tissue engineering and gene therapy technologies to develop a therapeutic platform for bone regeneration. We have developed photothermal fibrin-based hydrogels that incorporate degradable CuS nanoparticles (CuSNP) which transduce incident near-infrared (NIR) light into heat. A heat-activated and rapamycin-dependent transgene expression system was incorporated into mesenchymal stem cells to conditionally control the production of bone morphogenetic protein 2 (BMP-2). Genetically engineered cells were entrapped in the photothermal hydrogels. In the presence of rapamycin, photoinduced mild hyperthermia induced the release of BMP-2 from the NIR responsive cell constructs. Transcriptome analysis of BMP-2 expressing cells showed a signature of induced genes related to stem cell proliferation and angiogenesis. We next generated 4 mm diameter calvarial defects in the left parietal bone of immunocompetent mice. The defects were filled with NIR-responsive hydrogels entrapping cells that expressed BMP-2 under the control of the gene circuit. After one and eight days, rapamycin was administered intraperitoneally followed by irradiation with an NIR laser. Ten weeks after implantation, the animals were euthanized and samples from the bone defect zone were processed for histological analysis using Masson's trichrome staining and for immunohistochemistry analyses using specific CD31 and CD105 antibodies. Samples from mice that were only administered rapamycin or vehicle or that were only NIR-irradiated showed the persistence of fibrous tissue bridging the defect. In animals that were treated with rapamycin, NIR irradiation of implants resulted in the formation of new mineralized tissue with a high degree of vascularization, thus indicating the therapeutic potential of the approach. Acknowledgements: This research was supported by grants RTI2018-095159-B-I00 and PID2021-126325OB-I00 (MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”), by grant P2022/BMD- 7406 (Regional Government of Madrid). M.A.L-J. is the recipient of predoctoral fellowship PRE2019-090430 (MCIN/AEI/10.13039/501100011033)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 15 - 15
10 May 2024
Longoni A Arnold S Major GS Jiang A Wise L Hooper G Kieser D Woodfield T Rnjak-Kovacina J Lim K
Full Access

INTRODUCTION. Stimulation of angiogenesis via the delivery of growth factors (GFs) like vascular endothelial growth factor (VEGF) is a promising strategy for the treatment of avascular necrosis (AVN). Tyraminated poly-vinyl-alcohol hydrogels (PVA-Tyr), which have the ability to covalently incorporate GFs, were proposed as a platform for the controlled delivery of therapeutic levels VEGF to the necrotic areas[1]. Nevertheless, PVA hydrophilicity and bioinertness limits its integration with the host tissues. The aim of this study was to investigated the effectiveness of incorporating gelatin, an FDA-approved, non-immunogeneic biomaterial with biological recognition sites, as a strategy to facilitate blood vessels invasion of PVA-Tyr hydrogels and to restore the vascular supply to necrotic tissues. METHODS. Progressively higher gelatin concentrations (0.01–5wt%) were incorporated in the PVA-Tyr network. Hydrogel physico-chemical properties and endothelial cell attachment were evaluated. Afterwards, the capability of the released VEGF and gelatin to promote vascularization was evaluated via chorioallantoic membrane (CAM) assay. VEGF-loaded PVA-Tyr hydrogels with or without gelatin (n=7) were implanted in a subcutaneous mouse model for 3 weeks. Vascularization (CD31+ cells) and cell infiltration (H&E) were evaluated. Finally, AVN was induced in 6 weeks old male piglets as previously described [2]. A transphyseal hole (3mm) was drilled and PVA-Tyr hydrogels with 1% gelatin were delivered in the defects. Piglets were euthanized after 4 weeks and microCT analysis was performed. RESULTS. The incorporation of 1% gelatin significantly enhanced cell attachment without compromising hydrogels physical properties, degradation time, VEGF retention and release. Thus, this gelatin concentration was selected for further analysis. Additionally, the covalent incorporation of VEGF or gelatin to the PVA-Tyr network does not hamper their bioactivity, as both still promoted neo-angiogenesis in a CAM assay. Following subcutaneous implantation, the presence of gelatin did not increase the cellular infiltration in the PVA-Tyr hydrogels. Nevertheless, higher vascular infiltration was observed in the groups where either gelatin or VEGF were included. Additionally, preliminary microCT results indicated that the delivery of PVA-Tyr hydrogels containing 1% gelatin in an AVN model was effective in preventing the necrosis-associated resorption of the bone. DISCUSSION & CONCLUSIONS. These results indicated that the presence of either gelatin or VEGF was sufficient to promote vascular infiltration. Additionally, preliminary results suggested the suitability of the developed hydrogels to treat AVN