Advertisement for orthosearch.org.uk
Results 1 - 20 of 35
Results per page:
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 60 - 60
1 Mar 2009
Gutiérrez P Domenech P Bustamante D Roca J
Full Access

Purpose: To study the development of the hip and the relationship of radiological angles between acetabulum and proximal femur in children 0–3 years and thus the influence of walking and weight bearing on hip development. Material and Methods: A study mesuring radiological angles in antero-posterior X-rays of pelvis in 334 children between 0 a 3 years of age (1997–2005), including acetabular index (AI) and physeal proximal angle (PPA (Alsberg’ angle) with goniometer (error ± 1°). Patients with pelvis or femur fractures or inflammatory diseases were excluded. Age distribution was of 1 (69.2%), 2 (22.2%) and 3 years (8.7%). 36.8% were males and 63.2% females. Descriptive statistics, T- test, Spearman correlation and ANOVA were used. Level of significance p< 0.05. Results: The mean AI was 20.2°, 19.9° and 17.3°, in 1, 2 and 3 years. The AI angle diminishes significatively in children older than 2 years of age (p = 0.002). The mean PPA was 79.5°, 74.9° and 74.2°, in 1,2 y 3 years respectively. The Alberg’s angle reduced significatively at 1 year of age (p = 0.0005). AI and PPA was higher in females after 1 year of age (p = 0.02 and p = 0.04). There are not significative correlation between AI and Alsberg’ angle in different groups of children (r = 0.03). The age was important factor in both angles changes (p = 0.0005), but female patients (p = 0.002) and left side (p = 0.02) influenced only in AI. Conclusions: AI and PPA angles reduced with age specially in 2 and 1 year, respectively, suggesting the effect of weight bearing and walking on hip shape. There was not relation between both angles in different groups of age


Bone & Joint Open
Vol. 3, Issue 1 | Pages 12 - 19
3 Jan 2022
Salih S Grammatopoulos G Burns S Hall-Craggs M Witt J

Aims. The lateral centre-edge angle (LCEA) is a plain radiological measure of superolateral cover of the femoral head. This study aims to establish the correlation between 2D radiological and 3D CT measurements of acetabular morphology, and to describe the relationship between LCEA and femoral head cover (FHC). Methods. This retrospective study included 353 periacetabular osteotomies (PAOs) performed between January 2014 and December 2017. Overall, 97 hips in 75 patients had 3D analysis by Clinical Graphics, giving measurements for LCEA, acetabular index (AI), and FHC. Roentgenographical LCEA, AI, posterior wall index (PWI), and anterior wall index (AWI) were measured from supine AP pelvis radiographs. The correlation between CT and roentgenographical measurements was calculated. Sequential multiple linear regression was performed to determine the relationship between roentgenographical measurements and CT FHC. Results. CT-measured LCEA and AI correlated strongly with roentgenographical LCEA (r = 0.92; p < 0.001) and AI (r = 0.83; p < 0.001). Radiological LCEA correlated very strongly with CT FHC (r = 0.92; p < 0.001). The sum of AWI and PWI also correlated strongly with CTFHC (r = 0.73; p < 0.001). CT measurements of LCEA and AI were 3.4° less and 2.3° greater than radiological LCEA and AI measures. There was a linear relation between radiological LCEA and CT FHC. The linear regression model statistically significantly predicted FHC from LCEA, F(1,96) = 545.1 (p < 0.001), adjusted R. 2. = 85.0%, with the prediction equation: CT FHC(%) = 42.1 + 0.77(XRLCEA). Conclusion. CT and roentgenographical measurement of acetabular parameters are comparable. Currently, a radiological LCEA greater than 25° is considered normal. This study demonstrates that those with hip pain and normal radiological acetabular parameters may still have deficiencies in FHC. More sophisticated imaging techniques such as 3D CT should be considered for those with hip pain to identify deficiencies in FHC. Cite this article: Bone Jt Open 2022;3(1):12–19


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 73 - 73
19 Aug 2024
Ganz R Blümel S Stadelmann VA Leunig M
Full Access

The Bernese periacetabular osteotomy (PAO) is not indicated for growing hips as it crosses the triradiate cartilage in its posterior branch, and experimental work has shown this can induce substantial deformations, similar to posttraumatic dysplasia, which is observed after pelvis crash injuries in childhood. Upon examination, all injuries in the 19 cases of posttraumatic dysplasia described in literature plus 16 hips of our personal collection took place before the age of 6, which is striking as pelvic injuries in children increase with age. Based on this observation, we started to extend the PAO indication to severe dysplasias in children with open growth plate, initially aged 9 years and older. Following the positive results, it was extended further, our youngest patient being 5 years old. We retrospectively examined radiographic outcomes of 23 hips (20 patients), aged 10.6±1.8 years [range 5.0 – 13.2], operated by us in four centers. Pre- and 3-months postoperative, and the latest FUP radiograph at growth plate closure were measured. We evaluated the acetabular index (AI), lateral center-edge (LCE), ACM-value and compared them with reference values adjusted for age. The age at triradiate cartilage closure was compared with the non-operated side. The follow-up time was 5.4±3.7 years [0.8 - 12.7]. In 5 hips, growth plate closure was delayed by a few months. All angles significantly normalized after PAO (LCE: 14±8° → 38±11°, AI: 20±8° → 7±4°, ACM: 53±5° → 48±4°), with >80% of them severe pathological pre-PAO, none afterwards. Acetabular molding was normal. Only few complications occurred; one had signs of coxarthosis, one sciatic nerve pain, one interfering osteosynthesis material that was removed, one had an additional valgus osteotomy, and all resolved. Based on 20 cases with follow-up until complete triradiate cartilage closure, we believe to have sufficient information to extend the PAO indication to growing hips of 9 years and older


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 11 - 11
1 Dec 2022
Upasani V Bomar J Fitzgerald R Schupper A Kelley S
Full Access

The Pavlik harness (PH) is commonly used to treat infantile dislocated hips. Variability exists in the duration of brace treatment after successful reduction of the dislocated hip. In this study we evaluate the effect of prescribed time in brace on acetabular index (AI) at two years of age using a prospective, international, multicenter database. We retrospectively studied prospectively enrolled infants with at least one dislocated hip that were initially treated with a PH and had a recorded AI at two-year follow-up. Subjects were treated at one of two institutions. Institution 1 used the PH until they observed normal radiographic acetabular development. Institution 2 followed a structured 12-week brace treatment protocol. Hip dislocation was defined as less than 30% femoral head coverage at rest on the pre-treatment ultrasound or IHDI grade III or IV on the pre-treatment radiograph. Fifty-three hips met our inclusion criteria. Hips from Institution 1 were treated with a brace 3x longer than hips from institution 2 (adjusted mean 8.9±1.3 months vs 2.6±0.2 months)(p < 0 .001). Institution 1 had an 88% success rate and institution 2 had an 85% success rate at achieving hip reduction (p=0.735). At 2-year follow-up, we observed no significant difference in AI between Institution 1 (adjusted mean 25.6±0.9˚) compared to Institution 2 (adjusted mean 23.5±0.8˚) (p=0.1). However, 19% of patients from Institution 1 and 44% of patients from Institution 2 were at or below the 50th percentile of previously published age- and sex- matched AI normal data (p=0.049). Also, 27% (7/26) of hips from Institution 1 had significant acetabular dysplasia, compared to a 22% (6/27) from Institution 2 (p=0.691). We found no correlation between age at initiation of bracing and AI at 2-year follow-up (p=0.071). Our findings suggest that prolonged brace treatment does not result in improved acetabular index at age two years. Hips treated at Institution 1 had the same AI at age two years as hips treated at Institution 2, while spending about 1/3 the amount of time in a brace. We recommend close follow-up for all children treated for dislocated hips, as ~1/4 of infants had acetabular index measurements at or above the 90th percentile of normal. Continued follow-up of this prospective cohort will be critical to determine how many children require acetabular procedures during childhood. The PH brace can successfully treat dislocated infant hips, however, prolonged brace treatment was not found to result in improved acetabular development at two-year follow-up


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 2 - 2
1 Apr 2022
Jenkinson M Peeters W Hutt J Witt J
Full Access

Acetabular retroversion is a recognised cause of hip impingement. Pelvic tilt influences acetabular orientation and is known to change in different functional positions. While previously reported in patients with developmental dysplasia of the hip, positional changes in pelvic tilt have not been studied in patients with acetabular retroversion. We retrospectively analysed supine and standing AP pelvic radiographs in 22 patients with preoperative radiographs and 47 with post-operative radiographs treated for symptomatic acetabular retroversion. Measurements were made for acetabular index (AI), lateral centre-edge angle (LCEA), crossover index, ischial spine sign, and posterior wall sign. The change in pelvic tilt angle was measured both by the Sacro-Femoral-Pubic (SFP) angle and the Pubic Symphysis to Sacro-iliac (PS-SI) Index. In the supine position, the mean calculated pelvic tilt angle (by SFP) was 1.05° which changed on standing to a pelvic tilt of 8.64°. A significant increase in posterior pelvic tilt angle from supine to standing of 7.59° (SFP angle) and 5.89° (PS –SI index) was calculated (p<0.001;paired t-test). There was a good correlation in pelvic tilt change between measurements using SFP angle and PS-SI index (rho .901 in pre-op group, rho .815 in post-op group). Signs of retroversion were significantly reduced in standing x-rays compared to supine: Crossover index (0.16 vs 0.38; p<0.001) crossover sign (19/28 vs 28/28 hips; p<0.001), ischial spine sign (10/28 hips vs 26/28 hips; p<0.001) and posterior wall sign (12/28 vs 24/28 hips; p<0.001). Posterior pelvic tilt increased from supine to standing in patients with symptomatic acetabular retroversion, in keeping with previous studies of pelvic tilt change in patients with hip dysplasia. The features of acetabular retroversion were much less evident on standing radiographs. The low pelvic tilt angle in the supine position is implicated in the appearance of acetabular retroversion in the supine position. Patients presenting with symptoms of hip impingement should be assessed by supine and standing pelvic radiographs so as not to miss signs of retroversion and to assist with optimising acetabular correction at the time of surgery


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 49 - 49
1 Nov 2021
Peeters W Jenkinson M Hutt J Witt J
Full Access

Acetabular retroversion is a recognised cause of hip impingement. Pelvic tilt influences acetabular orientation and is known to change in different functional positions. While previously reported in patients with developmental dysplasia of the hip, positional changes in pelvic tilt have not been studied in patients with acetabular retroversion. We retrospectively analysed supine and standing AP pelvic radiographs in 22 patients with preoperative radiographs and 47 with post-operative radiographs treated for symptomatic acetabular retroversion. Measurements were made for acetabular index (AI), lateral centre-edge angle (LCEA), crossover index, ischial spine sign, and posterior wall sign. The change in pelvic tilt angle was measured both by the Sacro-Femoral-Pubic (SFP) angle and the Pubic Symphysis to Sacro-iliac (PS-SI) Index. In the supine position, the mean calculated pelvic tilt angle (by SFP) was 1.05° which changed on standing to a pelvic tilt of 8.64°. A significant increase in posterior pelvic tilt angle from supine to standing of 7.59° (SFP angle) and 5.89° (PS –SI index) was calculated (p<0.001;paired t-test). The mean pelvic tilt change of 6.51° measured on post-operative Xrays was not significantly different (p=.650). There was a good correlation in pelvic tilt change between measurements using SFP angle and PS-SI index (rho .901 in pre-op group, rho .815 in post-op group). Signs of retroversion were significantly reduced in standing x-rays compared to supine: Crossover index (0.16 vs 0.38; p<0.001) crossover sign (19/28 vs 28/28 hips; p<0.001), ischial spine sign (10/28 hips vs 26/28 hips; p<0.001) and posterior wall sign (12/28 vs 24/28 hips; p<0.001). Posterior pelvic tilt increased from supine to standing in patients with symptomatic acetabular retroversion, in keeping with previous studies of pelvic tilt change in patients with hip dysplasia. The features of acetabular retroversion were much less evident on standing radiographs. The low pelvic tilt angle in the supine position is implicated in the appearance of acetabular retroversion in the supine position. Patients presenting with symptoms of hip impingement should be assessed by supine and standing pelvic radiographs so as not to miss signs of retroversion and to assist with optimising acetabular correction at the time of surgery


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_10 | Pages 22 - 22
1 Aug 2021
Stamp G Bhargava K Malviya A
Full Access

Periacetabular osteotomy (PAO) has been established as an effective technique to treat symptomatic hip dysplasia in young patients. Its role in treating borderline dysplasia and acetabular retroversion is evolving. The aim of this study was to:. Examine the prospectively collected outcomes following a minimally invasive PAO in a large cohort of patients. Compare the outcomes of patients with severe dysplasia, borderline dysplasia and acetabular retroversion. This is a single-surgeon review of patients operated in a high-volume centre with prospectively collected data between 2013 and 2020, and minimal followup of six months. PAO was performed using a minimally invasive modified Smith Peterson approach. 387 patients were operated during the study period and 369 eligible patients included in the final analysis. Radiographic parameters were assessed by two authors (GS and KB) with interrater reliability for 25 patients of 84–95% (IntraClass Coefficient). Patient reported outcome measures (i-HOT 12, NAHS, UCLA and EQ-5D) were collected prospectively. Case note review was also performed to collate complication data and blood transfusion rates. Radiological parameters improved significantly after surgery with Lateral centre-edge angle (LCEA) improving by 16.4 degrees and Acetabular index (AI) improved by 15.8 degrees. Patient reported outcome measures showed significant improvement in post-op NAHS, iHOT and EQ5D at 2 years compared to pre-op scores (NAHS=30.45, iHOT=42, EQ5D=0.32, p=0.01). This significance is maintained over 2 years post procedure (p=0.001). There was no significant difference between the three groups (severe dysplasia, borderline dysplasia and acetabular retroversion). Clinical outcomes showed an overall complication rate n=31, 8.3% (Major complication rate: n=3, 0.81%). Non-union rate: n=11, 2.96% of which 3 required fixation (0.81%). Hip arthroscopy post PAO: n=7, 1.9%. Conversion to THR: n=4, 1.1%. Blood transfusion requirement: n=46, 12.5%. No patient developed a major neurovascular injury. In this large single-centre study, patients had radiological and reported outcome improvements following surgery. Overall, there was a low complication rate, providing further evidence of the safety and efficacy of PAO for ameliorating pain and long-lasting results in the management of symptomatic hip dysplasia


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 48 - 48
1 Oct 2019
Anderson L Erickson J Peters CL
Full Access

Introduction. Radiographic assessment of acetabular fragment positioning during periacetabular osteotomy (PAO) is of paramount importance. Plain radiographic examination is time and resource intensive. Fluoroscopic based assessment is increasingly utilized but can introduce distortion. Our purpose was to determine the correlation of intraoperative fluoroscopy-based measurements with a fluoroscopic tool that corrects for distortion with postoperative plain-film measurements. Methods. We performed a prospective validation study on 32 PAO's (28 patients) performed by a single academic surgeon. Preoperative standing radiographs, intraoperative fluoroscopic images, and postoperative standing radiographs were evaluated with lateral center edge angle (LCEA), acetabular index (AI), posterior wall sign (PWS), and anterior center edge angle (ACEA). Intraoperative fluoroscopy was adjusted to account for pelvic inclination. The fluoroscopic GRID was utilized in all cases (Phantom MSK Hip Preservation, OrthoGrid LLC, Salt Lake City, UT). Intraoperative fluoroscopic measurements were compared to preoperative and postoperative standing radiographs at 6 weeks using linear regression applied in MINITAB. Results. All pre and post-correction measurements demonstrated excellent agreement within an average difference of 1.2 and 0.9 degrees (deg) respectively (p<0.01). Agreement between post-correction fluoroscopic GRID measurements and 6-week postoperative radiographs was: average difference for LCEA −0.4 deg (range −5 to 8 deg, SD 3.4), −0.9 deg for ACEA (range −16 to 7 deg, SD 5.1), and 0.3 deg for AI (range −8 to 6 deg, SD 3.3) (all p<.01). The PWS agreement was 93%. There was a tendency for fluoroscopic GRID measurements to underestimate acetabular coverage by less than 1 degree. Conclusion. Our study validated the use of a novel intraoperative fluoroscopic tool that accounts for fluoroscopic distortion and permits real-time measurements of PAO fragment correction that correlate accurately with postoperative evaluation. We believe that this tool adds value by giving surgeons reliable quantitative measurements of correction without interfering with surgical work-flow. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 102 - 102
1 Jul 2020
Castano D Grammatopoulos G Salimian A Beaulé P
Full Access

During a periacetabular osteotomy (PAO), intra-operative assessment of correction of acetabular parameters is typically performed using fluoroscopy of the hip, a technique that has not been shown to produce predictable measurements. Furthermore, paralysing agents are used in order to facilitate dissection and fragment mobilization. The effect of paralysing agents on spino-pelvic posture is yet to be investigated. This study aims to: 1. Compare the reliability of intra-operative x-rays versus hip fluoroscopy in the assessment of acetabular fragment correction and 2. Evaluate the effect of changes in spino-pelvic alignment on the assessment of acetabular correction. An IRB approved, retrospective review of all patients who underwent a PAO at our institution between 2006–2018 was performed. Patient demographic data was collected and all available imaging studies were retrieved. Patients were excluded if there was no available to review intra-operative AP pelvis x-ray or intra-operative fluoroscopic PA image of the hip. Using a validated hip analysis software (Hip2Norm), the lateral center edge angle (LCEA) and acetabular index (AI) of plain radiographs were measured. The sacro-femoral-pubic angle (SFP), along with the LCEA and AI of the fluoroscopic image were measured using ImageJ. A oneway ANOVA was used to detect differences between measured parameters in the intra-operative x-ray, the post-operative x-ray and the fluoroscopic image. A total of 93 patients were identified. 26 patients were excluded due to missing data. The mean LCEA in the post-operative, intra-operative, and fluoroscopic groups were as follows: 33.67° (range 5.3° to 52.4°), 30.71°(range 9° to 55.6°), and 29.23°(range 12.4° to 51.4°) respectively. The mean AI in the post-operative, intra-operative, and fluoroscopic groups were as follows: −0.65° (range −18.10° to 27.30°), 0.35°(range −16.10° to 17.20°), and 5.54°(range −11.66° to 27.83°) respectively. When comparing intra-operative to post-operative plain radiographs, there was no statistically significant difference in AI (ΔAI −1±1.29° p=0.71) or LCEA (ΔLCEA 2.95±1.38° p=0.09). When comparing fluoroscopy to post-operative plain radiographs, there was a statistically significant difference in AI (ΔAI −6.21±1.29° p < 0 .0001) as well as LCEA (ΔLCEA 4.44±1.38° p < 0 .0001). Statistical analysis revealed no influence of demographics (age, BMI, gender), on acetabular correction parameters. The mean SPF angles measured from intra-operative and post-operative x-rays were 69.32±5.11° and 70.45±5.52°. There was a statistically significant difference between these 2 measurements with a ΔSFP of 1.03° (p < 0 .0001). The results of our study show that the use of intra-operative x-ray for the assessment of LCEA and AI is more reliable than fluoroscopic images. Further, we found a difference in SFP angle, which offers an indirect assessment of pelvic tilt, between the intra-operative and the post-operative plain x-rays. This suggests that there are changes in pelvic tilt during the surgery, which can be attributed to either patient positioning or changes in spino-pelvic posture secondary to the paralysing agents used by the anesthetists. The use of intra-operative x-rays as well as the effect of paralysing agents on spino-pelvic alignment should be considered by surgeons performing PAO's


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 45 - 45
1 Jun 2017
Konan S Eyal G Witt J
Full Access

Clinical graphics allows creation of three dimensional simulation based on CT or MRI that allows pre-operative planning. The software reports several hip morphological parameters routinely. Our aim was to validate the measurements of acetabular morphological parameters using CT based clinical graphics in patients presenting with symptomatic hip pain. We reviewed standardised plain radiographs, CT scans and 3D clinical graphics outputs of 42 consecutive hips in 40 patients presenting with symptomatic hip pain. Acetabular index (AI), lateral centre edge angle (LCE), acetabular and femoral version measurements were analysed for the 3D clinical graphics with radiographs and CT as gold standard. Significant differences were noted in measurements of AI, LCE, acetabular version and femoral version using the 3D motion analysis versus conventional measures, with only acetabular version showing comparable measurements. Correlation between 3D clinical graphics and conventional measures of acetabular morphology (AI, LCE) showed only slight agreement (ICC <0.4); while substantial agreement was noted for acetabular and femoral version (IC > 0.5). Acetabular morphological parameters measured by 3D clinical graphics are not reliable or validated. While clinicians may pursue the use of 3D clinical graphics for preoperative non-invasive planning, caution should be exercised when interpreting the reports of hip morphological parameters such as AI and LCE


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 86 - 86
1 Jan 2018
Groen F Hossain F Karim K Witt J
Full Access

The purpose of this study was to determine the complications after Bernese periacetabular osteomy (PAO) performed by one experienced surgeon using a minimally invasive modified Smith-Petersen approach. Between May 2012 and December 2015, 224 periacetabular osteotomies (PAO) in 201 patients were performed. The perioperative complications were retrospectively reviewed after reviewing clinical notes and radiographs. The mean age was 28.8 years with 179 females and 22 males. The most common diagnosis was acetabular dysplasia with some cases of retroversion. The average lateral centre edge (LCE) angle was 16.5°(−18–45) and mean acetabular index (AI) 16.79° (−3–50). Postoperatively the mean LCE angle was 33.1°(20–51.3) and mean AI 3.0°. (−13.5–16.6). There were no deep infections, no major nerve or vascular injuries and only one allogenic blood transfusion. Nine superficial wound infections required oral antibiotics and two wounds needed a surgical debridement. There was one pulmonary embolus and one deep vein thrombosis. Nine (4%) cases underwent a subsequent hip arthroscopy and three (1.3%) PAO's were converted to a total hip arthroplasty after a mean follow-up of 22 months (3–50). Lateral femoral cutaneous nerve dysaesthesia was noted in 64 (28.6%) PAO's. In 55 (24.5%) an iliopsoas injection of local anaesthetic and steroid for persistent iliopsoas irritation during the recovery phase was given. The minimally invasive modified Smith-Petersen approach is suitable to perform a Bernese periacetabular osteotomy with a low perioperative complication rate. Persistent pain related to iliopsoas is a not uncommon finding and perhaps under-reported in the literature


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 176 - 176
1 Sep 2012
Alghamdi A Alam N Rendon S Saran N Benaroch T Hamdy RC
Full Access

Purpose. Introduction: The Dega osteotomy is a versatile procedure that is widely used to treat neuromuscular hip dysplasia. There is a paucity of English-language literature on its use in acetabular dysplasia seen in developmental dysplasia of the hip (DDH). Method. A retrospective radiographic and chart review was performed for all patients diagnosed with DDH who underwent a modified Dega osteotomy between March 1995 and December 2008 at the Shriners Hospital for Children or the Montreal Children's Hospital (Montréal, Canada) by two orthopedic surgeons. Radiographic parameters were measured at the preoperative, immediate postoperative and final follow-up time points. These parameters included the acetabular index (AI), center edge angle (CEA), Reimer's extrusion index, Shenton's line and grading by the Severin classification. Results. A total of 21 patients (22 hips) of which 18 were female, underwent a modified Dega osteotomy at an average age of 55.4 months (range: 20 to 100 months). Out of the 22 hips (1 bilateral and 19 single cases), 9 involved the right side and 13 involved the left side. Prior to surgery, 10 patients had a subluxated hip, 7 had a dislocated hip and 5 had a dysplastic hip. Twelve hips underwent concomitant procedures including 10 open reductions with capsulorraphy. The AI improved from 36 degrees (St. Dev 8) preoperatively to 19 degrees (St. Dev 7) on the date of last visit. The CEA improved from 4 (St. Dev 17) to 22 degrees (St. Dev 12). Conclusion. Results from this study demonstrate that the modified Dega osteotomy produces nearnormal lateral coverage parameters in children with DDH


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 278 - 278
1 Sep 2005
Barrett T Colyn S
Full Access

We conducted a retrospective audit of the short-term results of 14 patients with adolescent hip dysplasia treated with triple pelvic osteotomy. We compared our results with those in current international literature. The mean age of our patients at the time of surgery was 19 years (11 to 34). The mean follow-up period was 8 months. Preoperatively and postoperatively the patients were graded clinically by the modified Merle d’Aubigne and Postel systems. Radiological evaluation included the centre-edge (CE) angle of Wiberg, the acetabular index (AI) of Sharp and the percentage of femoral head cover. Patient satisfaction was graded out of five points. Clinically 86% of the patients exhibited improvement. The mean preoperative score was 12.3 (fair) and the mean postoperative score was 15.1 (good). Patient satisfaction was high, with a mean 4.75 out of 5 points. Radiologically there were notable improvements: the mean CE angle improved from 2° to 24°, the AI from 52° to 39°, and the percentage femoral head cover from 55% to 80%. Our results in this short-term study compare well with international results. The operation carries known long-term benefits in terms of biomechanics and delayed onset of OA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_6 | Pages 7 - 7
1 Feb 2013
Tarassoli P Gargan M Atherton G Thomas S
Full Access

Purpose. To compare the early medial open approach (MO) with the anterior approach (AO) performed after the appearance of the ossific nucleus for DDH that has failed closed reduction or presented late. Methods. We present the experience of 2 UK surgeons with prospectively gathered data for MO (26 hips) compared with that of a third surgeon in the same unit for the AO (21 hips) in 41 children under 24 months of age at index surgery. Femoral head osteonecrosis (FHO) risk was predicted using the height-to-width index of Bruce et al, measured at 12–18 months post reduction, and graded with the Kalamchi and MacEwen classification where follow-up exceeded 3 years. Acetabular index (AI) was measured at or close to 2 years post reduction. Results. Age at time of surgery averaged 11.2 months (3.1–24) for the MO group and 17.8 months (12–24) for the AO group. Average follow-up was 4.3 years (13 months to 12 years). FHO was evident or strongly predicted in 2/26 hips (7.7%) in the MO group and 2/21 (9.5%) in the AO group. AI improved by 8.8° (4–12°) and 7.9° (6–10°) respectively at 2 years post reduction (p>0.05). One case of early recurrent dislocation in the MO group required revision surgery via an anterior approach. The height to width index cut-off value of 0.357 at 12–18 months post reduction accurately predicted FHO risk in cases with longer follow-up. Conclusions. The medial open approach was not associated with a higher risk of FHO compared to a protocol of waiting for the appearance of the ossific nucleus before proceeding to reduction via an anterior approach. There was no significant difference in acetabular remodeling in the first two postoperative years between the protocols despite earlier reduction in the MO group


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 73 - 73
1 Feb 2012
Oswald N Macnicol M
Full Access

Method. The anteroposterior pelvic radiographs of 84 children (87 hips with developmental dysplasia) seen between 1995 and 2004 were reviewed retrospectively. Each radiograph was photographed digitally and converted to the negative using Microsoft Photo Editor. Arthrograms were also assessed at the time of femoral head reduction. The acetabular index (AI) and femoral head deformity were assessed. Acetabular response was measured using the AI at 6 and 12 months post-reduction. Results. Mean age at presentation was 11 months for the closed reduction group, versus 19 months for those with an arthrographic soft tissue obstruction requiring open reduction. Additionally, the average age of the children that underwent open reduction who later required a Salter osteotomy was 27 ± 3 months compared to an average of 14 ± 1.5 months for those who did not. The acetabular response was maximal during the first 6 months following treatment. Closed reduction (24 hips) gave comparable results to open reduction (63 hips), although the initial AI was greater in those requiring open reduction (39.5 ± 6.3° versus 36.1 ± 4.6°). Using two separate Bonferroni pairwise comparisons revealed no statistical difference in response between closed and open reduction. Arthrography revealed that hips requiring open reduction were more deformed, with spherical femoral heads in 29% as opposed to 68% in the closed reduction group. The AI was also slightly less (36.6 ± 3.2°) when the femoral head was spherical in comparison to those hips with an aspherical femoral head (38.0 ± 6.6°). Conclusion. Age at presentation and femoral head deformity therefore influence the outcome of reduction, but the acetabular index improves to a similar degree whether closed or open reduction is required


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 271 - 271
1 Mar 2003
Milickovic S Vukasinovic Z
Full Access

Treatment of residual acetabular dysplasia is still controversial regarding the timing of Surgery, and the type of surgical procedur. Material and Methods: We analyzed 70 patients (83 hips) operated between 1980–1988 year, in which Salter innominate osteotomy was performed in the treatment of residual acetabular dysplasia in DDH. Patients were divided in two different age groups: from 2–4 (53 hips) and 4–6 (30 hips) years. The average follow up was 7 years (from 2 to 10 years). Acetabular remodeling was radiographically assessed by measuring of the Acetabular Index (AI) at the beginning and after the 5 years of age subsequently by measuring the CE angle of Wiberg. All preoperative hips were dysplastic according to Tonnis (+2SD) criteria. Results were statistically analyzed by using the Student’s T test, and One Way Repeated Measures ANOVA, with the correction for the different age groups. Results: We found that there were no statistically significant differences in AI and CE angle between these two age groups and between these groups and normal values. Conclusion: We recommend Salter innominate osteotomy as a procedure of choice in the treatment of acetabular dysplasia in DDH, provided the patient is younger than 6 years of age


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 6 - 6
1 Jun 2017
Wyatt M Weidner J Pfluger D Beck M
Full Access

The definition of osseous instability in radiographic borderline dysplastic hips is difficult. A reliable radiographic tool that aids decision-making specifically, a tool that might be associated with instability-therefore would be very helpful for this group of patients. The aims of this study were:. (1) To compare a new radiographic measurement, which we call the Femoro-Epiphyseal Acetabular Roof (FEAR) index, with the lateral centre-edge angle (LCEA) and acetabular index (AI), with respect to intra- and interobserver reliability; (2) to correlate AI, neck-shaft angle, LCEA, iliocapsularis volume, femoral antetorsion, and FEAR index with the surgical treatment received instable and unstable borderline dysplastic hips; and (3) to assess whether the FEAR index is associated clinical instability in borderline dysplastic hips. We defined and validated the FEAR index in 10 standardized radiographs of asymptomatic controls using two blinded independent observers. Interrater and intrarater coefficients were calculated, supplemented by Bland-Altman plots. We compared its reliability with LCEA and AI. We performed a case-control study using standardized radiographs of 39 surgically treated symptomatic borderline radiographically dysplastic hips and 20 age-matched controls with asymptomatic hips (a 2:1 ratio), the latter were patients attending our institution for trauma unrelated to their hips but who had standardized pelvic radiographs between January 1, 2016 and March 1, 2016. Patient demographics were assessed using univariate Wilcoxon two-sample tests. There was no difference in mean age (overall: 31.5 ± 11.8 years [95% CI, 27.7–35.4 years]; stable borderline group: mean, 32.1± 13.3 years [95%CI, 25.5–38.7 years]; unstable borderline group: mean, 31.1 ± 10.7 years [95% CI, 26.2–35.9 years]; p = 0.96) among study groups. Treatment received was either a periacetabular osteotomy (if the hip was unstable) or, for patients with femoroacetabular impingement, either an open or arthroscopic femoroacetabular impingement procedure. The association of received treatment categories with the variables AI, neck-shaft angle, LCEA, iliocapsularis volume, femoral antetorsion, and FEAR index were evaluated first using Wilcoxon two-sample tests (two-sided) followed by stepwise multiple logistic regression analysis to identify the potential associated variables in a combined setting. Sensitivity, specificity, and receiver operator curves were calculated. The primary endpoint was the association between the FEAR index and instability, which we defined as migration of the femoral head either already visible on conventional radiographs or recentering of the head on AP abduction views, a break of Shenton's line, or the appearance of a crescent-shaped accumulation of gadolinium in the posteroinferior joint space at MR arthrography. The FEAR index showed excellent intra- and interobserver reliability, superior to the AI and LCEA. The FEAR index was lower in the stable borderline group (mean, −2.1 ± 8.4; 95% CI, −6.3 to 2.0) compared with the unstable borderline group (mean, 13.3 ± 15.2; 95% CI, 6.2–20.4) (p < 0.001) and had the highest association with treatment received. A FEAR index less than 5° had a 79% probability of correctly assigning hips as stable and unstable, respectively (sensitivity 78%; specificity 80%). A painful hip with a LCEA of 25° or less and FEAR index less than 5° is likely to be stable, and in such a situation, the diagnostic focus might more productively be directed toward femoroacetabular impingement


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VII | Pages 7 - 7
1 Mar 2012
Calder P Tennant S Hashemi-Nejad A Catterall A Eastwood D
Full Access

Purpose. To investigate the effect of soft tissue release (STR) and the length of postoperative immobilisation on the long term outcomes of closed reduction (CR) of the hip for developmental dysplasia of the hip. Materials. 77 hips (72 patients) who had undergone closed reduction (CR) between 1977-2005 were studied retrospectively to review their outcome (Severin grade), identify the reasons for failure and to assess factors associated with residual dysplasia. Particular attention was paid to the use of a STR at the time of CR (to improve initial hip stability) and the duration of postoperative immobilisation. Results. The mean age at CR was 10.5 months (5-24months) and mean follow up 97 months. A STR (adductor ± psoas tenotomies) was performed in 65%. Post-operative immobilisation time varied between 3-12 months (mean 6.3 months). 6 hips (all Tonnis grade 3) failed CR within 2-6 weeks. In the remaining 49 hips, 85% were Severin Grade 1 at age 5yrs. Acetabular index (AI) decreased in all patients over time: 80% hips had an AI <20. 0. at age 5yrs. Neither a STR, nor the time of post-operative immobilisation conferred any additional benefit on the final AI. 2/55 hips required a pelvic osteotomy for residual dysplasia. This was not related to initial Tonnis grade, age at reduction or use of STR. Conclusion. A STR is often required for initial hip stability. Once a stable hip is achieved, an excellent long term outcome from CR in infants <24months old can be expected with remodelling of the acetabular dysplasia in ≥95%. Significance. Hip stability is the key to a good outcome. The optimal length of post-operative bracing has not been determined from this study but 3-6months immobilisation of the stable hip is adequate


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 375 - 375
1 Jul 2010
Roposch A Spence G Hocking R Wedge JH
Full Access

Aim: To compare acetabular development and hip stability over time in patients treated for developmental dysplasia of the hip (DDH) by open reduction combined with either varusderotation (VDRO) or innominate (IO) osteotomies. Method: Patients who underwent open reduction for DDH, combined with either VDRO (38 patients) or IO (33 patients), between 15 months and 4 years of age were reviewed. Both groups comprised a single surgeon consecutive series, differing only in the type of osteotomy performed. A total of 490 postoperative radiographs over a maximum follow-up period of 13.6 years were analyzed. We used repeated measures analysis of variance to compare the change in acetabular index (AI) as well as several other radiographic indices of acetabular development and hip stability over time. Results: After osteotomy, the AI decreased in both groups but the magnitude of the decrease was significantly different between groups over time (p< 0.0001). The AI of patients undergoing VDRO never decreased as much as that of patients undergoing IO, with a mean difference of 10.4 degrees after 4 years (p< 0.0001). Similarly the IO group demonstrated more favourable acetabular architecture and hip stability over time compared to the VDRO group, as quantified by change in the acetabular floor thickness (p< 0.03), lateral centring ratio (p< 0.0001) and superior centring ratio (p < 0.0001). Conclusions: Acetabular remodelling after IO was more effective at reversing acetabular dysplasia and maintaining hip stability than VDRO. Long-term follow-up of VDRO will be necessary to determine if late improvement occurs. IO may be preferable over VDRO in the treatment of hip dislocation after walking age


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 257 - 257
1 Mar 2003
Kiely N Younis U Day J Meadows T
Full Access

The results of the Ferguson medial open reduction of the hip for DDH were reviewed to determine the complications, re-operation rate, clinical and radiological outcome. Notes were reviewed for 75 cases, of which 5 were bilateral. X-rays were available for 69 hips and were analysed for Acetabular index (AI) and Centre Edge (CE) angles of the operated and unaffected hips. The hips were assessed for avascular necrosis by the method of Kalamchi and MacEwan and were graded according to Severin. The mean age at operation was 11.8 months (range 3-23, SD 4.42, mode 11). The mean clinical follow up was 65.1 months (range 4-148, SD 33.4). The mean radiological follow up was 58.2 months (range 3 – 131, SD 31). No further surgical procedure was required for 60 hips (75%). Of the remainder, a Salter osteotomy was performed for 8 hips, of which 6 had additional procedures. 8 hips required a femoral osteotomy, 2 an Arthrogram and one a triple pelvic osteotomy. The AI improved following surgery, with a rate of increase double that for the unaffected side. The mean centre edge of the operated side was 6 degrees less than the unaffected side. Tables 2 and 3 show that the majority of hips had no avascular necrosis and a good radiological outcome. The results compare favourably with the literature. The conclusion is that the Ferguson medial open reduction has good long-term results with low rates of avascular necrosis