Advertisement for orthosearch.org.uk
Results 1 - 20 of 196
Results per page:
Bone & Joint Research
Vol. 1, Issue 10 | Pages 263 - 271
1 Oct 2012
Sharma GB Saevarsson SK Amiri S Montgomery S Ramm H Lichti DD Lieck R Zachow S Anglin C

Objectives

Numerous complications following total knee replacement (TKR) relate to the patellofemoral (PF) joint, including pain and patellar maltracking, yet the options for in vivo imaging of the PF joint are limited, especially after TKR. We propose a novel sequential biplane radiological method that permits accurate tracking of the PF and tibiofemoral (TF) joints throughout the range of movement under weightbearing, and test it in knees pre- and post-arthroplasty.

Methods

A total of three knees with end-stage osteoarthritis and three knees that had undergone TKR at more than one year’s follow-up were investigated. In each knee, sequential biplane radiological images were acquired from the sagittal direction (i.e. horizontal X-ray source and 10° below horizontal) for a sequence of eight flexion angles. Three-dimensional implant or bone models were matched to the biplane images to compute the six degrees of freedom of PF tracking and TF kinematics, and other clinical measures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 7 - 7
1 Jun 2023
Harris PC Lacey S Steward A Sertori M Homan J
Full Access

Introduction. The various problems that are managed with circular external fixation (e.g. deformity, complex fractures) also typically require serial plain x-ray imaging. One of the challenges here is that the relatively radio-opaque components of the circular external fixator (e.g. the rings) can obscure the view of the area of interest (e.g. osteotomy site, fracture site). In this presentation we describe how the geometry of the x-ray beam affects the produced image and how we can use knowledge of this to our advantage. Whilst this can be applied to any long bone, we have focused on the tibia, given that it's the most common long bone that is treated by circular external fixation. Materials & Methods. In the first part of the presentation we describe the known attributes (geometry) of the x-ray beam and postulate what effect it would have when we x-ray a long bone that is surrounded by a circular external fixator. In the second part we demonstrate this in practice using a tibia and a 3 ring circular external fixator. Differing x-ray beam orientations are used to demonstrate both how the geometry of the beam affects the produced image and how we can use this to our advantage to better visualise part of the bone. Results. The practical part of the study confirmed the theoretical part. Conclusions. Knowledge of the beam geometry can be used to minimise the obscuring nature of the circular fixator. This technique is simple and can be easily taught to the radiographer. It is a useful adjunct for the limb reconstruction surgeon


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 102 - 102
10 Feb 2023
White J Wadhawan A Min H Rabi Y Schmutz B Dowling J Tchernegovski A Bourgeat P Tetsworth K Fripp J Mitchell G Hacking C Williamson F Schuetz M
Full Access

Distal radius fractures (DRFs) are one of the most common types of fracture and one which is often treated surgically. Standard X-rays are obtained for DRFs, and in most cases that have an intra-articular component, a routine CT is also performed. However, it is estimated that CT is only required in 20% of cases and therefore routine CT's results in the overutilisation of resources burdening radiology and emergency departments. In this study, we explore the feasibility of using deep learning to differentiate intra- and extra-articular DRFs automatically and help streamline which fractures require a CT. Retrospectively x-ray images were retrieved from 615 DRF patients who were treated with an ORIF at the Royal Brisbane and Women's Hospital. The images were classified into AO Type A, B or C fractures by three training registrars supervised by a consultant. Deep learning was utilised in a two-stage process: 1) localise and focus the region of interest around the wrist using the YOLOv5 object detection network and 2) classify the fracture using a EfficientNet-B3 network to differentiate intra- and extra-articular fractures. The distal radius region of interest (ROI) detection stage using the ensemble model of YOLO networks detected all ROIs on the test set with no false positives. The average intersection over union between the YOLO detections and the ROI ground truth was Error! Digit expected.. The DRF classification stage using the EfficientNet-B3 ensemble achieved an area under the receiver operating characteristic curve of 0.82 for differentiating intra-articular fractures. The proposed DRF classification framework using ensemble models of YOLO and EfficientNet achieved satisfactory performance in intra- and extra-articular fracture classification. This work demonstrates the potential in automatic fracture characterization using deep learning and can serve to streamline decision making for axial imaging helping to reduce unnecessary CT scans


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 55 - 55
11 Apr 2023
Raina D Markeviciute V Arvidsson L Törnquist E Stravinskas M Kok J Jacobson I Liu Y Tengattini A Sezgin E Vater C Zwingenberger S Isaksson H Tägil M Tarasevicius S Lidgren L
Full Access

Majority of osteoporosis related fractures are treated surgically using metallic fixation devices. Anchorage of fixation devices is sometimes challenging due to poor osteoporotic bone quality that can lead to failure of the fracture fixation. Using a rat osteoporosis model, we employed neutron tomography and histology to study the biological effects of implant augmentation using an isothermally setting calcium sulphate/hydroxyapatite (CaS/HA) biomaterial with synthetic HA particles as recruiting moiety for systemically administered bisphosphonates. Using an osteoporotic sawbones model, we then provide a standardized method for the delivery of the CaS/HA biomaterial at the bone-implant interface for improved mechanical anchorage of a lag-screw commonly used for hip fracture fixation. As a proof-of-concept, the method was then verified in donated femoral heads and in patients with osteoporosis undergoing hip fracture fixation. We show that placing HA particles around a stainless-steel screw in-vivo, systemically administered bisphosphonates could be targeted towards the implant, yielding significantly higher peri-implant bone formation compared to un-augmented controls. In the sawbones model, CaS/HA based lag-screw augmentation led to significant increase (up to 4 times) in peak extraction force with CaS/HA performing at par with PMMA. Micro-CT imaging of the CaS/HA augmented lag-screws in cadaver femoral heads verified that the entire length of the lag-screw threads and the surrounding bone was covered with the CaS/HA material. X-ray images from fracture fixation surgery indicated that the CaS/HA material could be applied at the lag-screw-bone interface without exerting any additional pressure or risk of venous vascular leakage.: We present a new method for augmentation of lag-screws in fragile bone. It is envisaged that this methodcould potentially reduce the risk of fracture fixation failure especially when HA seeking “bone active” drugs are used systemically


Bone & Joint Open
Vol. 2, Issue 8 | Pages 599 - 610
1 Aug 2021
Hothi H Bergiers S Henckel J Iliadis AD Goodier WD Wright J Skinner J Calder P Hart AJ

Aims. The aim of this study was to present the first retrieval analysis findings of PRECICE STRYDE intermedullary nails removed from patients, providing useful information in the post-market surveillance of these recently introduced devices. Methods. We collected ten nails removed from six patients, together with patient clinical data and plain radiograph imaging. We performed macro- and microscopic analysis of all surfaces and graded the presence of corrosion using validated semiquantitative scoring methods. We determined the elemental composition of surface debris using energy dispersive x-ray spectroscopy (EDS) and used metrology analysis to characterize the surface adjacent to the extendable junctions. Results. All nails were removed at the end of treatment, having achieved their intended lengthening (20 mm to 65 mm) and after regenerate consolidation. All nails had evidence of corrosion localized to the screw holes and the extendable junctions; corrosion was graded as moderate at the junction of one nail and severe at the junctions of five nails. EDS analysis showed surface deposits to be chromium rich. Plain radiographs showed cortical thickening and osteolysis around the junction of six nails, corresponding to the same nails with moderate – severe junction corrosion. Conclusion. We found, in fully united bones, evidence of cortical thickening and osteolysis that appeared to be associated with corrosion at the extendable junction; when corrosion was present, cortical thickening was adjacent to this junction. Further work, with greater numbers of retrievals, is required to fully understand this association between corrosion and bony changes, and the influencing surgeon, implant, and patient factors involved. Cite this article: Bone Jt Open 2021;2(8):599–610


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 18 - 18
10 May 2024
Joseph R Callon K Lin J Matthews B Irwin S Williams D Ashton N Crawford H Wen J Swift S Cornish J
Full Access

Introduction. Major trauma during military conflicts involve heavily contaminated open fractures. Staphylococcus aureus (S. aureus) commonly causes infection within a protective biofilm. Lactoferrin (Lf), a natural milk glycoprotein, chelates iron and releases bacteria from biofilms, complimenting antibiotics. This research developed a periprosthetic biofilm infection model in rodents to test an Lf based lavage/sustained local release formulation embedded in Stimulin beads. Method. Surgery was performed on adult rats and received systemic Flucloxacillin (Flu). The craniomedial tibia was exposed, drilled, then inoculated with S. aureus biofilm. A metal pin was placed within the medullary cavity and treatments conducted. Lf in lavage solutions: The defect was subject to 2× 50 mL lavage with 4 treatment groups (saline only, Lf only, Bactisure with Lf, Bactisure with saline). Lf embedded in Stimulin beads: 4 bead types were introduced (Stimulin only, Lf only, Flu only, Lf with Flu). At day 7, rats are processed for bioluminescent and X-ray imaging, and tibial explants/pins collected for bacterial enumeration (CFU). Results. Rats without treatments established a mean infection of 2×106 CFU/tibia. 4 treatment groups with a day 0, one-off lavage demonstrated >95% reduction in bacterial load 7 days post-op, with a reduction in CFU from 1×106/tibia down to 1×104/tibia. There was no statistically significant difference between each group (p = 0.55 with one way ANOVA). The stimulin bead experiments are ongoing and complete results will be obtained in the end of July. Conclusions. This research demonstrated a clinically relevant animal model of implanted metalware that establishes infection. No additional benefit was observed with a one-off, adjuvant Lf lavage during the initial decontamination of the surgical wound, compared with saline alone, and in combination with the antiseptic Bactisure. This animal model provides the foundation for future antibiofilm therapies


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 57 - 57
14 Nov 2024
Birkholtz F Eken M Boyes A Engelbrecht A
Full Access

Introduction. With advances in artificial intelligence, the use of computer-aided detection and diagnosis in clinical imaging is gaining traction. Typically, very large datasets are required to train machine-learning models, potentially limiting use of this technology when only small datasets are available. This study investigated whether pretraining of fracture detection models on large, existing datasets could improve the performance of the model when locating and classifying wrist fractures in a small X-ray image dataset. This concept is termed “transfer learning”. Method. Firstly, three detection models, namely, the faster region-based convolutional neural network (faster R-CNN), you only look once version eight (YOLOv8), and RetinaNet, were pretrained using the large, freely available dataset, common objects in context (COCO) (330000 images). Secondly, these models were pretrained using an open-source wrist X-ray dataset called “Graz Paediatric Wrist Digital X-rays” (GRAZPEDWRI-DX) on a (1) fracture detection dataset (20327 images) and (2) fracture location and classification dataset (14390 images). An orthopaedic surgeon classified the small available dataset of 776 distal radius X-rays (Arbeidsgmeischaft für Osteosynthesefragen Foundation / Orthopaedic Trauma Association; AO/OTA), on which the models were tested. Result. Detection models without pre-training on the large datasets were the least precise when tested on the small distal radius dataset. The model with the best accuracy to detect and classify wrist fractures was the YOLOv8 model pretrained on the GRAZPEDWRI-DX fracture detection dataset (mean average precision at intersection over union of 50=59.7%). This model showed up to 33.6% improved detection precision compared to the same models with no pre-training. Conclusion. Optimisation of machine-learning models can be challenging when only relatively small datasets are available. The findings of this study support the potential of transfer learning from large datasets to improve model performance in smaller datasets. This is encouraging for wider application of machine-learning technology in medical imaging evaluation, including less common orthopaedic pathologies


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 50 - 50
17 Nov 2023
Williams D Ward M Kelly E Shillabeer D Williams J Javadi A Holsgrove T Meakin J Holt C
Full Access

Abstract. Objectives. Spinal disorders such as back pain incur a substantial societal and economic burden. Unfortunately, there is lack of understanding and treatment of these disorders are further impeded by the inability to assess spinal forces in vivo. The aim of this project is to address this challenge by developing and testing a novel image-driven approach that will assess the forces in an individual's spine in vivo by incorporating information acquired from multimodal imaging (magnetic resonance imaging (MRI) and biplane X-rays) in a subject-specific model. Methods. Magnetic resonance and biplane X-ray imaging are used to capture information about the anatomy, tissues, and motion of an individual's spine as they perform a range of everyday activities. This information is then utilised in a subject-specific computational model based on the finite element method to predict the forces in their spine. The project is also utilising novel machine learning algorithms and in vitro, six-axis mechanical testing on human, porcine and bovine samples to develop and test the modelling methods rigorously. Results & Discussion. MRI sequences have been identified that provide high-quality image data and information on different tissue types which will be used to predict subject-specific disc properties. In-vivo protocols to capture motion analysis, EMG muscle activity, and video X-rays of the spine have been designed with planned data collection of 15 healthy volunteers. Preliminary modelling work has evaluated potential machine learning approaches and quantified the sensitivity of the models developed to material properties. Conclusion. The development and testing of these image-driven subject-specific spine models will provide a new tool for determining forces in the spine. It will also provide new tools for measuring and modelling spine movement and quantifying the properties of the spinal tissues. Acknowledgments. Funding from the EPSRC: EP/V036602/1 (Meakin, Holsgrove & Javadi) and EP/V032275/1 (Holt & Williams). Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 964 - 969
1 Sep 2024
Wang YC Song JJ Li TT Yang D Lv ZB Wang ZY Zhang ZM Luo Y

Aims. To propose a new method for evaluating paediatric radial neck fractures and improve the accuracy of fracture angulation measurement, particularly in younger children, and thereby facilitate planning treatment in this population. Methods. Clinical data of 117 children with radial neck fractures in our hospital from August 2014 to March 2023 were collected. A total of 50 children (26 males, 24 females, mean age 7.6 years (2 to 13)) met the inclusion criteria and were analyzed. Cases were excluded for the following reasons: Judet grade I and Judet grade IVb (> 85° angulation) classification; poor radiograph image quality; incomplete clinical information; sagittal plane angulation; severe displacement of the ulna fracture; and Monteggia fractures. For each patient, standard elbow anteroposterior (AP) view radiographs and corresponding CT images were acquired. On radiographs, Angle P (complementary to the angle between the long axis of the radial head and the line perpendicular to the physis), Angle S (complementary to the angle between the long axis of the radial head and the midline through the proximal radial shaft), and Angle U (between the long axis of the radial head and the straight line from the distal tip of the capitellum to the coronoid process) were identified as candidates approximating the true coronal plane angulation of radial neck fractures. On the coronal plane of the CT scan, the angulation of radial neck fractures (CTa) was measured and served as the reference standard for measurement. Inter- and intraobserver reliabilities were assessed by Kappa statistics and intraclass correlation coefficient (ICC). Results. Angle U showed the strongest correlation with CTa (p < 0.001). In the analysis of inter- and intraobserver reliability, Kappa values were significantly higher for Angles S and U compared with Angle P. ICC values were excellent among the three groups. Conclusion. Angle U on AP view was the best substitute for CTa when evaluating radial neck fractures in children. Further studies are required to validate this method. Cite this article: Bone Joint J 2024;106-B(9):964–969


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 365 - 365
1 Mar 2013
Yamazaki T Ogasawara M Tomita T Yoshikawa H Sugamoto K
Full Access

Purpose. For 3D kinematic analysis of total knee arthroplasty (TKA), 2D/3D registration techniques which use X-ray fluoroscopic images and computer-aided design model of the knee implants, have been applied to clinical cases. These techniques are highly valuable for dynamic 3D kinematic analysis, but have needed time-consuming and labor-intensive manual operations in some process. In previous study, we reported a robust method to reduce manual operations to remove spurious edges and noises in edge detection process of X-ray images. In this study, we address another manual operations problem occurred when setting initial pose of TKA implants model for 2D/3D registration. To set appropriate initial pose of the model with manual operations for each X-ray image is important to obtain the good registration results. However, the number of X-ray images for a knee performance is very large, and thus to set initial pose with manual operations is very time-consuming and a problem for practical clinical applications. Therefore, this study proposes an initial pose estimation method for automated 3D kinematic analysis of TKA. Methods. 3D pose of an implant model is estimated using a 2D/3D registration technique based on a robust feature-based algorithm. To reduce labor-intensive manual operations of initial pose setting for large number of X-ray images, we utilize an interpolation technique with an approximate function. First, for some X-ray images (key frames), initial poses are manually adjusted to be as close as possible, and 3D poses of the model are accurately estimated for each key frame. These key frames were appropriately selected from the 2D feature point of knee motion in the X-ray images. Next, the 3D pose data estimated for each key frame are interpolated with an approximate function. In this study, we employed a multilevel B-spline function. Thus, we semi-automatically estimate the initial 3D pose of the implant model in X-ray images except for key frames. Fig. 1 shows the algorithm of initial pose estimation, and Fig. 2 shows the scheme of the data interpolation with an approximate function. Experimental results. To validate the feasibility of the proposed initial pose estimation method, experiments using X-ray fluoroscopic images of 8 TKA patients during knee motions were performed. For the experiments, we prepared two sorts of contour images, and applied the proposed method to the one image contained spurious edges and noises. The other image which spurious edges and noises didn't exist was used for determination of correct poses (reference data) using 2D/3D registration. In order to assess the performance of the proposed method, automation rate was calculated, and the rate was defined as the X-ray frame number of satisfying clinical required accuracy (error within 1 mm, 1 degree) relative to all X-ray frame number. As results of the experiments, the automation rate of the femoral and tibial component were about 79 % and 73 %, respectively. Conclusions. This study presented an initial pose estimation method for automated 3D kinematic analysis of TKA using X-ray fluoroscopic images. The method without labor-intensive operations is thought to be very useful for practical clinical applications


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 153 - 153
1 Mar 2010
Kim Y Le D Kim K
Full Access

In the knee joint surgery such as total knee arthroplasty (TKA), the implant should be inserted in proper position with correct bone alignment because the abnormal kinematics of implanted knees by implant mal-positioning or mal-alignment could cause failure of surgery. Therefore, quantitative information of a 3D kinematics of the knee joint is very helpful to evaluate the surgical treatment such as planning of size and alignment of the implant. In this study, a 2D/3D image matching method was developed to estimate the kinematics of the knee joint based on an automated pixel by pixel comparison of images. Two projection images were obtained from the 3D object in two perpendicular directions where the given dual X-ray images were taken. The 3D object was translated and rotated automatically and continuously until its projection images were matched with the X-ray images in a given tolerance range. The optimization algorithm was used to minimise the root mean square error between the gray scale values of each pixel in the projection image and the given X-ray image. For estimating the position and orientation of the knee joint, the 3D knee joint models were reconstructed from CT data. The 3D model was matched with the given dual X-ray images by using the developed 2D/3D image matching method. The tibial and femoral components were then combined into the whole knee joint model. By adding fiducial markers based on clinically conventional method, the posterior and mediolateral translation of femur with respect to tibia as well as the flexion angle were measured. In the experiment with the cubic phantom, the position errors were below 0.10 mm and the orientation errors were below 0.05 o when using dual X-ray images. For the given dual X-ray images, the relative in vivo kinematics of the femur was measured as the posterior translation was 3.0 mm and the mediolateral translation was 0.9 mm. In addition, the flexion angle of the knee joint from the sagittal view was 51o while the angle measured from the given X-ray image was 50 o. The previous 2D/3D image matching methods operated manually took long time and was dependent on the operator. Recently, automated image matching method has developed by applying optimization algorithms. In this study, the optimal position and orientation were obtained by the direct pixel by pixel comparison, which are easy to implement and modify the algorithm. The present automated method could accelerate the matching process and stabilise the repeatability. In addition, the image matching method with dual images was used to improve the out-of-plane accuracy since the image matching method with a single X-ray image has a limitation of methodology in detecting out-of-plane translation and rotation though the in-plane accuracy was acceptable. The present 2D/3D image matching method is a powerful tool for the accurate determinations of 3D position and orientation of the knee joint and could provide informative characterization of implant designs and surgical options of the knee surgery


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 70 - 70
1 Aug 2020
Montreuil J Lavoie F Thibeault F Cresson T de Guise J
Full Access

Evaluate precisely and reproducibly tridimensional positioning of bone tunnels in anterior cruciate ligament reconstructions (ACL). To propose biplanar stereoradiographic imaging as a new reference in tridimensional evaluation of ACL reconstruction (ACLR). Comparing knee 3D models issued from EOStm low-irradiation biplanar X-Ray with those issued from computed tomography (CT-Scan) high definition images will allow a bone morphological description of a previously unseen precision. We carried out the transfer of 3D models from EOStm X-Ray images obtained from 10 patients in the same reference frame with models issued from CT-Scan. Two evaluators reconstructed both pre-operative and post-operative knees, using two different stereoradiographic projections, for a total of 144 knee 3D models from EOStm. A surface analysis by distance mapping allowed us to know the differences or errors between the homologous points of the EOStm and CT reconstructions, the latter being our “bronze-standard”. At the femur, we obtained a mean (95% confidence level) error of 1.5 mm (1.3–1.6) between the EOStm models compared to the Arthro-CT segmentations when using AP-LAT incidences, compared to 1 mm (1.0 – 1.1) with oblique projections. For the tunnels placement analysis, the total radius difference between EOStm and Arthro-CT's femoral tunnel apertures was 0.8 mm (0.4–1.2) in AP-LAT and 0.6 mm (0.0–1.2) in oblique views. These femoral apertures positioning on EOStm models were within 4.3 mm (3.0–5.7) of their homologues on CT-Scan models, 4.6 mm (3.5–5.6) with the oblique views. Furthermore, 9.3o (7.2–11.4) of difference in direction between femoral tunnels from EOStm models and CT reconstructions is obtained with AP-LAT projections, 8.3o (6.6–10) with obliques views. Measures of these parameters were also performed at the tibia. According to the intra and inter-reproducibility analysis of our knee 3D models, EOStm biplanar X-Ray images prove to be fast, efficient and precise in the design of ACLR 3D models with respect to CT-Scan. Our results also propose the recourse of oblique stereoradiographic projections for the realization of knee 3D models. These models will be subjects of further analysis and will allow us eventually to propose a new frame of reference guiding the positioning of the tunnels in the ACLR


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 112 - 112
1 Feb 2017
Faizan A Chuang P Aponte C Sharkey P
Full Access

Introduction. Various 2D and 3D surfaces are available for cementless fixation of acetabular cups. The goal of these surface modifications is to improve fixation between the metallic cups and surrounding bone. Radiographs have historically been used to evaluate the implant-to-bone fixation around the acetabular cups. In general, a well fixed cup shows no gaps or radiolucency around the cup's outer diameter. In post-operative radiographs, the presence of progressive radiolucent zones of 2mm or more around the implant in the three radiographic zones is indicative of aseptic loosening, as described by DeLee and Charnley [1]. In this cadaveric study, we investigated the X-ray image characteristics of two different types of acetabular shell surfaces (2D and 3D) to evaluate the implant-to-bone interface in the two designs. Methods. Six human cadavers were bilaterally implanted with acetabular cups by an orthopaedic surgeon. 2D surface cups (Trident, Stryker, Mahwah, NJ) and 3D surface cups (Tritanium, Stryker, Mahwah, NJ) were randomized between the left and right acetabula. The surgeon used his regular surgical technique (1 mm under reaming) to implant the acetabular cups. The cadavers were sent for X-ray imaging after the operation, Figure 1A. Following the X-ray imaging, the acetabular cups were carefully resected from the cadavers. Enough bone around the cups was retained for analysis of the implant-to-bone interface by contact X-ray. The acetabular cups with the surrounding bone were fixed in 70% isopropyl alcohol for about a week and subsequently embedded in polymethyl methacrylate. The embedded cups were sectioned at 30° intervals using a diamond saw in the coronal plane, as recommended by Engh et al [2], Figure 1B. The sectioning of the samples produced 6 slices of each cup where the implant-bone interface could easily be visualized for evaluation with contact X-ray. Results. The AP X-rays of the cadavers demonstrated radiolucent lines, as well as gap defects in some cases. The same phenomenon was observed on the contact X-rays of the embedded implant sections as well, where one could easily identify the gap between the metal cup and the surrounding bone. The most striking finding was that, in a few cases, the contact X-rays showed radiolucency around the metal cup whereas the physical section did not seem to have any gaps. This phenomenon is illustrated in Figure 2. Conclusions. The physical gap or radiolucent lines around the acetabular cups have been reported in literature; however, they seem to fill up with time as biological fixation progresses between the surrounding bone and the implant. In our study we found radiolucency that was not associated with the presence of a physical gap. In contrast, we found gaps on physical sections that were not correlated with radiolucencies. This phenomenon may be attributed to the interaction of X-rays with the cup surface modifications. The contact X-ray images demonstrated that radiolucency around cups may not always correlate with physical gaps. Further analysis is required to understand the implications of these findings


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 498 - 498
1 Aug 2008
Gibson S McAllister K Kumar CS
Full Access

Aim: To evaluate intraoperative use of the Mini C-Arm compared with standard X-ray image intensification. Method: Radiation exposure data was collected for patients undergoing orthopaedic operative procedures. Data was collected over a 3 month period using a standard Siemens Siremobil 2000 X-Ray image intensifier (175 procedures) and also from a new smaller surgeon– operated Vertec Fluoroscan X-Ray image intensifier (144 procedures). Skin entrance radiation dose was calculated for the procedures with each X-ray unit. Results: There were sufficient numbers of wrist procedures to permit comparison of the X-ray units. The skin entrance dose of radiation was calculated and found to be lower for all procedures with the surgeon-operated X-ray unit. Discussion: New, small surgeon-operated X-ray image intensifiers are now available and are safer for theatre staff due to reduced X-ray beam scatter. These X-ray units remove the need for a radiographer to be present in theatre. This is also of importance as staff shortages in radiography persist. Conclusion: Surgeon-operated X-ray image intensification is safe and convenient in the orthopaedic operating theatre without increasing radiation exposure


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 50 - 50
1 Dec 2017
Touchette M Anglin C Guy P Amlani M Hodgson A
Full Access

Fluoroscopic C-arms are operated by medical radiography technologists (RTs) in Canadian operating rooms (ORs). While they do receive formal, accredited training, most of it is theoretical, rather than hands-on. During their first encounters in the OR, new RTs can experience difficulty achieving the radiographic views required by surgeons, often needing several scout X-rays during C-arm positioning. Furthermore, ambiguous language by surgeons often inadequately conveys their request. The result is often frustration, unnecessary radiation exposure, and added OR time. The purpose of this study was to evaluate the value of artificial X-rays in improving C-arm positioning performance, with inexperienced C-arm users. We developed an Artificial X-ray Imaging System (AXIS) that generates Digitally Reconstructed Radiographs (DRRs), or artificial X-ray images, based on the relative position of a C-arm and manikin. 30 participants were enrolled in the user study and performed four activities: an introduction session, an AXIS-guided evaluation, a non-AXIS-guided evaluation, and a questionnaire. The main goal of the study was to assess C-arm positioning performance with and without AXIS guidance. For each evaluation, the participants had to replicate a set of target X-ray images by taking real radiographs of the manikin with the C-arm. During the AXIS evaluation, artificial X-rays were generated at 2 Hz for guidance, while in the non-AXIS evaluation, the participants had to acquire real scout X-rays to guide them toward the correct view. For each imaging task the number of real X-rays and time required per task was recorded, and the C-arm's pose was tracked and compared to the target pose to determine positioning accuracy; these were averaged for each participant and condition. Hypothesis testing on the means and paired t-tests were carried out using a significance level of α=0.05. On average, users took significantly fewer real scout X-ray images (53% fewer (2.8 vs 6.0), p<0.001) when guided by AXIS. Lateral distance accuracy was improved by 10% for final C- arm positions and by 26% for the most accurate intermediate C-arm positions when guided by AXIS (p<0.05). There was no significant difference in average task time or angular accuracies between the AXIS and non-AXIS evaluations. Overall, we are encouraged by these findings and plan to further develop this system with the goal of deploying it both for training and intraoperative uses


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 84 - 84
1 Aug 2013
Murphy R Otake Y Lepistö J Armand M
Full Access

Introduction. The goal of this work is to develop a system for three-dimensional tracking of the acetabular fragment during periacetabular osteotomy (PAO) using x-ray images. For PAO, the proposed x-ray image-based navigation provides geometrical and biomechanical assessment of the acetabular fragment, which is unavailable in the conventional procedure, without disrupting surgical workflow or requiring tracking devices. Methods. The proposed system combines preoperative planning with intraoperative tracking and near real-time automated assessment of the fragment geometry (radiographic angles) and biomechanics (contact pressure distribution over the acetabular surface). During PAO, eight fiducial beads are attached to the patient after incision and prior to performing osteotomy. Four of the beads attach to the iliac wing above the expected superior osteotomy (these are termed confidence points), and four attach on the expected fragment (denoted fragment points). At least two x-ray images are obtained before and after osteotomy. In each set of images, image processing routines segment the fiducials and triangulate the 2D fiducial projections in 3D space. A paired-point registration between the confidence points triangulated from the two x-ray image sets aligns the imaging frames. We measured the transformation between the fragment points with respect to the confidence points to quantify the motion of the acetabular fragment. Applying an image-based 2D-3D registration to the measured acetabular transformation localises the reoriented acetabular fragment with respect to an anatomical coordinate system. We present the surgeon with visualisation and automatic estimations of radiographic angles and biomechanics of the reoriented acetabular fragment. We conducted an experiment to evaluate feasibility and accuracy of the proposed system using a high density pelvic sawbone. Stainless steel beads were glued to the sawbone as fiducials. X-ray images were selected from cone-beam CT (CBCT) scans with an encoded motorised C-arm. Fiducial segmentation from reconstructed volumes of the CBCT scans provided a ground truth for the experiment. Results. We used four images spaced at 45° to perform the 2D/3D registration. The measured fragment transformation errors in translation and rotation about a fixed axis when compared to the CBCT-computed transformation were 0.37°, 0.34mm for the x-ray image based approach (with 3 images spaced at 20°) and 1.49°, 4.39mm for the optical tracker. Conclusion. We developed and evaluated x-ray image-based navigation to track the acetabular fragment in 3D Cartesian space during PAO. Capturing the fragment transformation allows automated algorithms to assess the biomechanics and geometry of the realigned acetabulum that are unavailable in 2D. The error between the measured positions of the beads and the triangulated positions is attributed to three main sources: 1) fiducial segmentation error; 2) geometric calibration error; and 3) localisation of fiducials in volumetric reconstructions of the CBCT scans. These small reported errors suggest the procedure is a viable approach for conducting x-ray image-based navigation of PAO


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 57 - 57
1 Feb 2016
Ehlke M Heyland M Mardian S Duda GN Zachow S
Full Access

We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient-specific surface of the distal femur based on 2D X-ray images. Our goal is to study from clinical data, how the plate-to-bone distance affects bone healing. The patient-specific 3D shape of the femur is, however, seldom recorded for cases of femoral osteosynthesis since this typically requires Computed Tomography (CT), which comes at high cost and radiation dose. Our method instead utilises two postoperative X-ray images to derive the femoral shape and thus can be applied on radiographs that are taken in clinical routine for follow-up. First, the implant geometry is used as a calibration object to relate the implant and the individual X-ray images spatially in a virtual X-ray setup. In a second step, the patient-specific femoral shape and pose are reconstructed in the virtual setup by fitting a deformable statistical shape and intensity model (SSIM) to the images. The relative positioning between femur and implant is then assessed in terms of displacement between the reconstructed 3D shape of the femur and the plate. A preliminary evaluation based on 4 cadaver datasets shows that the method derives the plate-to-bone distance with a mean absolute error of less than 1mm and a maximum error of 4.7 mm compared to ground truth from CT. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 138 - 138
1 Mar 2010
Kim H Kim A Youn I Choi K
Full Access

Personalized three-dimensional (3D) femoral geometry is a great aid in the surgical planning. X-ray image is still essential to diagnose and plan surgery in total hip replacement due to its lower cost and lower dose of radiation than computer tomography (CT). The purpose of the current study is to improve 3D reconstruction process using conventional X-ray images incorporating the anatomical parameters for building up the femoral model. For 3D reconstruction, the personalized femoral appearance and parameters were firstly prepared from X-ray images and the referential CT model with anatomical parameters was modified as follows: the axial scaling, shearing transformation and radial scaling. In this study, the reconstruction algorithm was applied to X-ray images obtained from the 28 years old male. The current study showed that this 3D reconstruction technique is clinically useful and feasible because this method was based on anatomical parameters and used for whole femur. This result can provide the basic model of individual femur for using finite element method of hip or knee joint, and designing the customized hip and knee implant. In addition, this result can be applied to the visualized 3D model with more effective parameters of individual femur in the surgery navigation system


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 93 - 93
1 Feb 2020
Ta M Nachtrab J LaCour M Komistek R
Full Access

Introduction. Conventional hip radiographs allow surgeons, during preoperative planning, to make important decisions. Size and location of implants are routinely measured by overlaying schematics of the implanted components onto preoperative radiographs. Most currently available planning tools are in two-dimensions (2D), using X-ray images and 2D templates of the implants. Determination of the ideal component size requires two radiographic views of the femur: the anterior-posterior (AP) and the lateral direction. The surgeon uses this information to determine component sizes. Even though this approach has been used for many years leading to very good results, this manual process potentially carries multiple shortcomings. The biggest issue with the AP X-ray image is the fact that it is 2D in nature while the measurement's objective is to obtain three-dimensional (3D) parameters. Objective. The objective of this study is to derive a methodology to automatically select correct THA implant sizes while keeping the anatomical center of each specific patient within a forward solution model (FSM) that predicts post-operative outcomes. Methods. The femoral components in our process contain five parameters: stem length, neck offset, neck length, neck shaft angle, and component width. There are many steps to measure the morphologic parameters of a femoral component. (1)Preparation of training implant database, (2)defining multi-plane intersection, (3)determining circumcircles for all intersected femoral component contours, (4)finding centers and radii of circumcircles, (5)measuring distances from each circumcircle to the femoral component head center, and (6)determining the stem shaft axis. The FSM fits specific femoral canal using a 3D mesh model of the femur. The femoral component and canal morphology of a femur model are compared to the training femoral component database. For each femoral component morphology, the algorithm determines how far distally the femoral component fits within the canal before collision between the stem and cortical bone. Once the defined position is confirmed, the relative distance from the anatomical femoral head center to the femoral component head center is calculated. This process is repeated for all femoral component morphology. The best fitting femoral component is determined when the distance from its head center to the femoral head center is minimized, Figure 1. Results. Three intensive validation tools have been developed: (1) cross-sectional analysis, (2) slice analysis, and (3) contact map analysis. Cross-sectional analysis is a graphic interaction program where users can freely view the anatomy at any orientation, Figure 2. The slice analysis enhances the user visualization by providing a static view of the fit between chosen femoral component and femoral canal, Figure 3. Finally, the contact map analysis allows for visualization of contact area through the bone-stem interface. Conclusion and Discussion. This is a powerful tool with the FSM that allows surgeons to get a “best fit” implant in 3D, based on canal fit and distance from anatomical femoral head center. Surgeons may want to manually size up or down, but the program will pick best fit sizes based on anatomical morphology. Future iterations will consider the reaming depth each surgeon uses to improve implant selection for each surgeon's technique. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 30 - 30
1 May 2016
Shibata Y Sekiya I Takada N Mukofujiwara Y Sakuma E Otsuka T Iguchi H
Full Access

Background. Cementless short stems have the advantages of easy insertion, reduced thigh pain and being suitable for minimally-invasive surgery, therefore cementless short stem implants have been becoming more widely used. The revelation microMAX stem is a cementless short stem with a lateral flare design that allows for proximal physiological load transmission and more stable initial fixation. Images acquired with T-smart tomosynthesis using a new image reconstruction algorithm offer reduced artifacts near metal objects and clearer visualization of peri-implant trabeculae. Therefore, these images are useful for confirming implant fixation status after total hip arthroplasty (THA). We believe that T-smart tomosynthesis is useful for estimating the condition of microMAX stem fixation and will hereby report on observation of the postoperative course of microMAX stem. Materials and Methods. Subjects comprised 19 patients (20 hips) who underwent THA using micro MAXstem between July 2012 and November 2014 (males: 7, females: 12, mean age: 67 years, ranging from 38 to 83 years). Four patients had femoral head necrosis and 15 patients had osteoarthritis of the hip. All patients continuously underwent anterior-posterior and lateral view X-ray examination and an anterior-posterior T-smart tomosynthesis scan after the operations. Results. No stem loosening was noted in any subjects. X-ray images taken over time indicated spot welds in 12 hips (60%), while T-smart tomosynthesis showed spot welds in 19 hips (95%). Furthermore, reactive radiodense lines (tensile area) were noted on X-ray images of eight hips (40%), whereas they were detected by T-smart tomosynthesis in 10 hips (50%). A prominent reactive line around the tip of the stem was noted on X-ray images in three hips (15%), and this was detected by T-smart tomosynthesis in four hips (20%). Discussion. Compared to X-ray examination, T-smart tomosynthesis made it possible to perform detailed confirmation of trabecular structure. In this series, spot welds were confirmed in the proximal load area according to the micro MAXstem design concept. Tomosynthesis images of trabeculae and trabecular structure can be confirmed in more detail than X-ray or computed tomography images. This information is beneficial for understanding the state of load transmission and implant fixation. Conclusions. The addition of tomosynthesis to micro MAXstem postoperative evaluation made it possible to accurately grasp the state of fixation between implant and bone