Wear debris released from bearing surfaces has been shown to
provoke negative immune responses in the recipient. Excessive wear
has been linked to early failure of prostheses. Analysis using coordinate
measuring machines (CMMs) can provide estimates of total volumetric
material loss of explanted prostheses and can help to understand
device failure. The accuracy of volumetric testing has been debated,
with some investigators stating that only protocols involving hundreds
of thousands of measurement points are sufficient. We looked to
examine this assumption and to apply the findings to the clinical
arena. We examined the effects on the calculated material loss from
a ceramic femoral head when different CMM scanning parameters were
used. Calculated wear volumes were compared with gold standard gravimetric
tests in a blinded study. Objectives
Methods
Polyethylene wear can be an important cause of knee replacement failure. Six TKRs in young, active patients with excellent Oxford Knee Scores and Knee Society Scores, mean 76 months post knee replacement and 5 control patients, 2 weeks post TKR, were selected. Each patient had weight bearing stereo radiographs of at 0, 15, 30, 45 and 60 degrees of flexion while standing in a calibration grid. These x-rays were analysed using our Radio Stereometric Analysis (RSA) system. The three-dimensional shape of the TKR (manufacturer’s computer aided design model) was matched to the TKR silhouette on the calibrated stereo radiographs for each angle of flexion. The relative positions of the femoral and tibial components in space were then determined and the linear and volumetric penetration was calculated using Matlab software. The accuracy of the system was found to be 0.3mm (CAD model tolerance 0.25mm). The mean linear wear in the control patients was 0.02mm (range −0.19 to +0.23mm). Average linear penetration in the study group was found to be 0.6 mm at 6 years, giving an overall linear wear rate of 0.1mm/year. Average penetration volume at 76 months was 399mm3. The average
Wear debris induced osteolysis is a recognized complication in conventional metal-on-polyethylene hip arthroplasty. One method of achieving wear reduction is through the use of metal-on-metal articulations. One of the latest manifestations of this biomaterial combination is in designs of hip resurfacing which are aimed at younger, more active patients. But, do these metal-on-metal hip resurfacings show low wear when implanted into patients?. Using a Mitutoyo Legex 322 co-ordinate measuring machine (scanning accuracy less than 1 micron) and a bespoke computer program,
Purpose of the study: The double-mobility concept was introduced for clinical applications for total hip arthroplasty in 1976. The concept preserves joint range of motion while increasing stability. In this study we evaluated the consequences of these advantages in terms of polyethylene wear, measuring wear both on the concave and convex surfaces and volumetrically. Material and methods: Forty polyethylene inserts were explanted and analyzed. Explantation had been performed for mechanical or septic failure after eight years implantation on average. Mean age of patients at implantation was 46 years. After examining the gross aspect of the insert, surface analysis was performed with direct measurement of changes in the curvature using a BHN 706 position sensor for the inner concave surface and lateral projection for the outer convex surface. Estimated measurement error was ±5μm for each method; the manufacturer's tolerance for production of the inserts was 50μm.
Introduction. Wear of the UHMWPE tibial component remains a major reason for aseptic loosening and subsequent revision or failure of TKAs [1]. Many retrieval studies measure surface damage patterns as surrogates for the severity of wear, but little is known about how these patterns relate to the volume of material lost. This study (a) examines the wear rate of a cruciate retaining TKA design and (b) relates observed wear patterns to volume loss on the surface. We hypothesize that damage patterns are good predictors for
Introduction: The biological activity of PE-particles released due to wear is an established risk-factor for osteolysis and loosening after Total Hip Arthroplasty (THA). Cup position and orientation might have an effect on the risk of impingement and wear, thus contribute to the risk of aseptic loosening in the long-term what should be studied. Methods: Between 1984 and 1987 a total of 149 cemented total hips (Müller all-poly cup, Müller straight stem, 32 mm head) have been implanted. All implants had a standardised clinical and radiological follow-up. The pre- and postoperative centre of rotation of the hip and the orientation of the cup were determined. Migration, linear wear and direction of wear were measured twice with standard Methods: and the digital EBRA method. Wear-volume was calculated, taking direction of wear and cup orientation into account. Radiographs were analysed for progressive osteolysis and loosening. Results: 1 patient was lost to follow-up, 47 had died, 7 had been revised before 10 years follow-up. 18 patients had a missing or poor final radiograph, leaving 75 hips for long-term analysis. 41 were in male patients, mean age was 66.2 (+/− 11.0) years, mean follow-up 15.4 (+/−4.1) years. Mean inclination was 40.7° (+/− 7.1), mean anteversion was 14.8° (+/−8.4) And the mean cup positioning was 3.8 mm (+/− 4.3) medial and 5.3 mm (+/− 3.5) cranial. Osteolysis was found in 36 cups, 18 of them have been revised. The average linear wear was 1.1 (+/− 0.9) mm, the average wear volume 798.7 (+/−622.3) mm3, the linear wear rate 0.07 (+/−0.06) mm/year and the
Wear and loosening are the major causes for long tem failure in Total Hip Replacement (THR). Accurate three dimensional wear analysis of radiographs has its own limitations. We report the results of our clinical study of three dimensional
Introduction. Metal-on-metal (MOM) total hip arthroplasty using large diameter femoral heads offer clinical advantages however the failure rates of these hips is unacceptably high. Retrieved hips have a wide range of wear rates of their bearing and taper surfaces and there is no agreement regarding the cause of failure. Detailed visual inspection is the first step in the forensic examination of failed hip components and may help explain the mechanisms of failure. The aim of this study was to determine if there was a correlation between the results of detailed inspections and the
Wear of the ultra-high molecular weight polyethylene (UHWMPE) component and the subsequent aseptic loosening remains a primary reason for late revision of total knee replacements (TKRs).[1] While improved measurement techniques have provided more quantitative information on the wear of surgically retrieved inserts, it is not well understood how observed damage patterns translate to volume loss of polyethylene in vivo. The overall purpose of this study is to investigate the relationship of damage patterns and volume loss at the articular surface of total knee replacements. We hypothesize that damage patterns are reliable predictors of volume loss. Two different investigators independently analyzed damage patterns and volume loss on 43 revision- and 21 postmortem-retrieved MG II (Zimmer Inc.) tibial UHMWPE components. Areas of damage patterns on the articular surfaces were outlined with a video microscope (SmartScope, OGP) and were separated into four spatially exclusive categories (Fig. 1): delamination, pitting, striations and polishing. Articular surfaces were digitized with a low-incidence laser coordinate measuring machine (SmartScope, OGP). Autonomous reconstruction, a previously described and validated method,[2] calculated volume loss on the medial and lateral sides of each component. To investigate the predictability of volume loss using observed patterns, stepwise linear regression models were rendered in PASW Statistics 18 (SPSS Inc).Introduction
Methods
Failure of total knee replacements due to the generation of polyethylene wear debris remains a crucial issue in orthopedics. Unlike the hip, it is difficult to accurately determine knee implant wear rates from retrieved components. Several studies have relied on thickness measurements to estimate penetration, but the complicated geometry of contemporary tibial liners poses a challenge to accurately assess wear. In this study we address the question whether linear penetration can serve as a surrogate measure for volumetric material loss. Eighty-one retrieved UHMWPE NexGen cruciate-retaining tibial liners (Zimmer, Warsaw, IN) with an average time in situ of 5.27±2.89 years were included in the study. Metrology data for the surfaces of the tibial liners were obtained with a coordinate measuring machine (OGP, Rochester, NY). Using a laser scanner with two micrometer depth accuracy, at least 400,000 measurement points were taken by investigator #1. Areal thickness changes were mapped for the lateral and medial sides with the help of an autonomous mathematical reconstruction algorithm and volume loss was calculated based on wear scar area and local thickness change. Investigator #2, blinded from these results, measured the minimum thickness of the medial and lateral tibial plateau using a dial indicator with a spherical tip radius of 3mm. Twenty-three short term retrievals (3 to 4 per implant size), removed due to infection and without any signs of wear, served as “unused” reference. Linear penetration was then calculated by subtracting the minimum thickness of each plateau from the average thickness of the reference components.Introduction
Methods
In the retrieval analysis of explanted hip joints, the estimation of wear volume and visualization of wear pattern are commonly used to evaluate in-vivo performance. While many studies report wear volumes from explanted hips, it is important to understand the limitations of these estimates including the sources and magnitude of uncertainty of the reported results. This study builds on a previous uncertainty analysis by Carmignato et al. to quantify the magnitude of uncertainty caused by the assumption that the as-manufactured shape of an explanted hip component is a perfect sphere. Synthetic data sets representing idealized measurements of spheroidal explants (prolate, oblate and pinched) with a nominal diameter of 50 mm were generated. These data sets represent the shape and magnitude of form deviations observed for explanted hip components (Figure 1). Data were simulated for either unworn components or those with a known volume and magnitude of wear simulated to represent 5 µm penetration of a 49.90 mm femoral head into an acetabular cup (Table 1). The volume of wear and wear pattern were estimated using a custom Matlab script developed for analysis of metrology data from explanted hip joints. This script fits a least squares sphere to data points in unworn, as manufactured regions of the surface to estimate the as-manufactured shape of the component. The diameter of the best fit sphere, and wear volume were compared to the known wear depths and volumes from the synthetic datasets. The results showed that the Matlab script estimated a wear volume of up to 1.4 mm3 for an unworn cup with a radial deviation of 10 µm. The maximum error of 13.3 mm3 was for a pinched cup with wear at the pole. The complete results are shown in Table 2. In some cases with aspherical form deviations, the least squares sphere fitted to the synthetic data was displaced in the Z direction with respect to the origin of the spheroid and the radius of the least squares sphere was outside the range of the principal radii of the spheroid. For instance, in case 5, the center was shifted 22 µm vertically from the mathematical center. The results from this study show that the magnitude of uncertainty due to form deviations on wear volume varies depending on the shape and magnitude of the form deviations and in some cases was greater than 10 mm3. A further important finding is that in some instances, the diameter and center of the least squares sphere fitted to the unworn regions may not be consistent with the mathematical radius and center of the synthetic data. This may have important implications for the “reverse engineering” of the as-manufactured dimensions from worn explanted hip joints.
Figure 1 Graphical depiction of a) synthetic data set, b) deviation map of a hemispherical acetabular cup with simulated wear, c) deviation map of a prolate spheroid with simulated wear at rim with color bar set to ±5 microns, d) deviation map of pinched ellipsoid with simulated wear at 45 degrees from pole.
The aims of this piece of work were to: 1) record the background
concentrations of blood chromium (Cr) and cobalt (Co) concentrations
in a large group of subjects; 2) to compare blood/serum Cr and Co
concentrations with retrieved metal-on-metal (MoM) hip resurfacings;
3) to examine the distribution of Co and Cr in the serum and whole
blood of patients with MoM hip arthroplasties; and 4) to further
understand the partitioning of metal ions between the serum and
whole blood fractions. A total of 3042 blood samples donated to the local transfusion
centre were analysed to record Co and Cr concentrations. Also, 91
hip resurfacing devices from patients who had given pre-revision
blood/serum samples for metal ion analysis underwent volumetric
wear assessment using a coordinate measuring machine. Linear regression analysis
was carried out and receiver operating characteristic curves were
constructed to assess the reliability of metal ions to identify
abnormally wearing implants. The relationship between serum and
whole blood concentrations of Cr and Co in 1048 patients was analysed
using Bland-Altman charts. This relationship was further investigated
in an Objectives
Methods
With the introduction of highly crosslinked polyethylene (HXLPE) in total hip arthroplasty (THA), orthopaedic surgeons have moved towards using larger femoral heads at the cost of thinner liners to decrease the risk of instability. Several short and mid-term studies have shown minimal liner wear with the use HXLPE liners, but the safety of using thinner HXPLE liners to maximize femoral head size remains uncertain and concerns that this may lead to premature failure exist. Our objective was to analyze the outcomes for primary THA done with HXLPE liners in patients who have a 36-mm head or larger and a cup of 52-mm or smaller, with a minimum of 10-year follow-up. Additionally, linear and
Highly crosslinked polyethylene (HXLPE) has been used with great clinical success in total hip arthroplasty (THA) since its debut in the late 1990's. However, reports regarding this bearing couple in its second decade of service are still scant. The aim of this study was to 1. Determine the long term clinical and radiological results and 2. Investigate what factors affect wear rates using a metal-on-HXLPE bearing articulation. 55 THA's using a single brand of HXLPE liner, cementless cup and 28mm hip ball were performed in 44 patients. Age, sex, and Charlson Comorbidity Index (CCI) and need for revision surgery were recorded. Linear and
Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method. Methods. Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and
Aims. The optimum clearance between the bearing surfaces of hip arthroplasties is unknown. Theoretically, to minimize wear, it is understood that clearances must be low enough to maintain optimal contact pressure and fluid film lubrication, while being large enough to allow lubricant recovery and reduce contact patch size. This study aimed to identify the relationship between diametrical clearance and
Oxidized zirconium (Oxinium) and highly cross-linked polyethylene (HXLPE) were developed with the purpose of minimizing wear, and subsequent osteolysis, in Total Hip Arthroplasty (THA). However, few articles have been published on long-term results of Oxinium on highly cross-linked polyethylene. The purpose of this investigation is to report minimum 10-year HXLPE wear rates and the clinical outcome of patients in this group and compare this population to a control group of cobalt chrome and ceramic. One hundred forty THAs were performed for 123 patients using an Oxinium head with an HXLPE liner. Ninety-seven had 10 years of clinical follow-up (avg. 14.5). Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up. Radiographs of 85 hips were available for a minimum 10-year follow-up (avg. 14.5) and used to calculate wear using PolyWare software. Control groups of cobalt chrome and ceramic articulation on HXLPE with a minimum 10-year follow-up were studied. Clinical follow-up of the Oxinium group showed a statistical improvement compared to preoperative and was similar to the control group of patients. Radiographic evaluation found the linear and
Total knee arthroplasty with a rotating hinge knee with carbon-fibre-reinforced (CFR)-PEEK as an alternative bushing material with enhanced creep, wear and fatigue behaviour has been clinically established [1-4]. The objective of our study was to compare results from in vitro biotribological characterisation to ex vivo findings on a retrievals. A modified in vitro wear simulation based on ISO 14243-1 was performed for 5 million cycles on rotating hinge knee (RHK) designs (EnduRo®) out of cobalt-chromium and ZrN-multilayer ceramic coating. The rotational & flexion axles-bushings and the flanges are made of CFR-PEEK with 30% polyacrylonitrile fibre content. Analysis of 12 retrieved EnduRo® RHK systems in cobalt-chromium and ZrN-multilayer in regard to loosening torques, microscopic surface analysis, distinction between different wear modes and classification with a modified HOOD-score has been performed. For the RHK design with the polyethylene gliding surface and bushings and flanges made out of CFR-PEEK, a cumulative
Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty for patients who require treatment of single-compartment osteoarthritis, especially for young patients. To satisfy this requirement, new patient-specific prosthetic designs have been introduced. The patient-specific UKA is designed on the basis of data from preoperative medical images. In general, knee implant design with increased conformity has been developed to provide lower contact stress and reduced wear on the tibial insert compared with flat knee designs. The different tibiofemoral conformity may provide designers the opportunity to address both wear and kinematic design goals simultaneously. The aim of this study was to evaluate wear prediction with respect to tibiofemoral conformity design in patient-specific UKA under gait loading conditions by using a previously validated computational wear method. Methods. Three designs with different conformities were developed with the same femoral component: a flat design normally used in fixed-bearing UKA, a tibia plateau anatomy mimetic (AM) design, and an increased conforming design. We investigated the kinematics, contact stress, contact area, wear rate, and
Introduction. Fretting corrosion of the modular taper junction in total hip arthroplasty has been studied in several finite element (FE) studies. Manufacturing tolerances can result in a mismatch between the femoral head and stem, which can influence the taper mechanics leading to possibly more wear. Using FE models the effect of these manufacturing tolerances on the amount of