Advertisement for orthosearch.org.uk
Results 1 - 20 of 34
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 88 - 88
1 Jan 2016
Van Der Straeten C Van Onsem S Callens R Slabbaert M Victor J
Full Access

Background

The use of Computed Tomography (CT) as a medical imaging tool has widespread applications in the field of knee surgery. Surgeons use a CT scan in a conventional way during the pre-operative stage, to plan the position of the femoral component in the horizontal plane. In the post-operative stage, the use of a CT scan is a routine tool in the evaluation of failed TKA as rotational malalignment of the femoral component has been determined as a cause of poor clinical outcome after TKA.

Aim

How accurately can we measure the different angles with importance for alignment on a 3D-image in comparison to a standard CT, 2D, image.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_7 | Pages 12 - 12
1 May 2015
Huijbregts H Punwar S McMurray D Sorensen E Fick D Khan R
Full Access

Eligible patients were randomly allocated to PMI or standard intramedullary jigs. Smith and Nephew's patient specific cutting blocks (Visionaire) were used for PMI. Postoperative component positioning was investigated using the ‘Perth CT protocol’. Deviation of more than 3° from the recommended position was regarded as an outlier. Exact Mann-Whitney U test was used to compare component positioning and difference in proportion of outliers was calculated using Chi Squared analysis.

Fifty-five knees were enrolled in the standard instrumentation group and fifty-two knees in the PMI group.

Coronal femoral alignment was 0.7 ± 1.9° (standard) vs 0.5 ± 1.6° (PMI) (P=0.33). Outliers 9.4% vs 7.4% (P=0.71). Coronal tibial alignment was 0.4 ± 1.5° (standard) vs 0.6 ± 1.4° (PMI) (P=0.56). Outliers 1.9% vs 1.9% (P=0.99). Sagittal femoral alignment was 0.6 ± 1.5° (standard) vs 1.3 ± 1.9° (PMI) (P=0.07). Outliers 3.8% vs 13.2% (P=0.09). Tibial slope was 1.7 ± 1.9 ° (standard) vs 1.8 ± 2.7° (PMI) (P=0.88). Outliers 13.2% vs 24.1% (P=0.15). External rotation of femoral component was 0.6 ± 1.4° (standard) vs 0.2 ± 1.8° (PMI) (P=0.14). Outliers: 3.8% vs 5.6% (P=0.66).

Compared to standard intramedullary jigs, patient matched instrumentation does not improve component positioning or reduce alignment outliers.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 560 - 560
1 Nov 2011
Cooke TD Sheehy L Felson D
Full Access

Purpose: Coronal mal-alignment contributes to total knee arthroplasty (TKA) failure. The surgical aim is to place the implant at right angles to the load-bearing axis, restoring the femoral and tibial mechanical axes (MA) to neutral. Mal-alignment of greater than 3° is associated with a poor outcome and reduced longevity. Pre-operative decisions for alignment correction are often made using anatomical axis (AA) measurements taken from standing short knee radiographs. The aim of this study was to determine how well the AA predicts the MA in subjects with mild and severe varus and valgus deformities. Several different methods of calculating the AA were also compared for their ability to predict the MA.

Method: The database of full-length lower extremity radiographs from the Multicenter Osteoarthritis (MOST) Study was used to select images for this study. All of the subjects in the MOST either had knee OA or were at high risk for developing knee OA. 120 full-length digital radiographs were assigned, with 30 in each of four alignment groups (0° to 4.9°, and ≥ 5° of varus and 0.1° to 4.9°, and ≥ 5° of valgus). The MA and 5 measures of the AA (using progressively shorter shaft lengths) were obtained from each radiograph using Horizons Analysis Software, OAISYS Inc. The offsets between the MA and the different versions of the AA were calculated (with 95% confidence intervals) for the complete sample of 120 limbs and for each alignment group. Pearson correlations were also calculated (α = 0.05).

Results: The average offset between the MA and the AA for the entire dataset was 5.0°. In varus limbs the shortened shaft AA measurements increased the offset from 5.1° to 7.0°. The opposite occurred with valgus limbs (from 5.0° to 3.7°). The CI for the offsets increased from less than 3° for the full-length AA measurements to over 8.3° for the shortest AAs. While correlations between MA and AA for the whole dataset were high (0.88 to 1.00), correlations for individual groups were much lower, especially for the shortest AA (0.41 to 0.66).

Conclusion: Using short knee radiographs to estimate the MA has important limitations. The offsets obtained using the shorter AAs vary depending on type and degree of mal-alignment, and do not provide reliable predictions for the MA. Full-length films are needed to consistently define the alignment in order to ensure the best outcome from TKA.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 292 - 292
1 Dec 2013
Dossett HG Swartz GJ Estrada NA LeFevre GW Kwasman B
Full Access

Introduction:

Recently there has been interest in an alternative method of aligning a total knee arthroplasty (TKA) referred to as kinematic alignment. The theoretical appeal of this method is that alignment of each patient's knee can be individualized through the use of preoperative imaging and computer software, with the goal of achieving pre-arthritic alignment through restoration of the axes of rotation of each particular knee. Clinical studies have evaluated the outcomes of this new alignment technique, but to date there have been no randomized controlled trials comparing kinematic alignment to mechanical alignment. This randomized controlled trial was conducted to compare kinematically aligned and mechanically aligned TKA outcomes of knee pain, function and motion at two years' post-op, along with a comparison of limb, knee, and implant alignment of the two methods.

Methods and Materials:

Forty-four patients were surgically treated with kinematically aligned TKA (figure 1) with the use of patient specific guides, and forty-four patients were surgically treated with mechanically aligned TKA with the use of conventional instruments. All patients underwent CT long leg scanograms after surgery, and outcomes data were collected at a minimum of 2 years. The patient, radiographic evaluator, and clinical evaluator were blinded as to the alignment method.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 56 - 56
1 Feb 2021
Catani F Illuminati A Ensini A Zambianchi F Bazzan G
Full Access

Introduction

Robotics have been applied to total knee arthroplasty (TKA) to improve surgical precision in component placement and joint function restoration. The purpose of this study was to evaluate prosthetic component alignment in robotic arm-assisted (RA)-TKA performed with functional alignment and intraoperative fine-tuning, aiming for symmetric medial and lateral gaps in flexion/extension. It was hypothesized that functionally aligned RA-TKA the femoral and tibial cuts would be performed in line with the preoperative joint line orientation.

Methods

Between September 2018 and January 2020, 81 RA cruciate retaining (CR) and posterior stabilized (PS) TKAs were performed at a single center. Preoperative radiographs were obtained, and measures were performed according to Paley's. Preoperatively, cuts were planned based on radiographic epiphyseal anatomies and respecting ±3° boundaries from neutral coronal alignment. Intraoperatively, the tibial and femoral cuts were modified based on the individual soft tissue-guided fine-tuning, aiming for symmetric medial and lateral gaps in flexion/extension. Robotic data were recorded.


Bone & Joint Open
Vol. 3, Issue 8 | Pages 656 - 665
23 Aug 2022
Tran T McEwen P Peng Y Trivett A Steele R Donnelly W Clark G

Aims. The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI?. Methods. A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship. Results. The postoperative HKA distribution varied from 9° varus to 11° valgus. All PROMs showed statistical improvements at one year (p < 0.001), with further improvements at five years for Knee Osteoarthritis Outcome Score symptoms (p = 0.041) and Forgotten Joint Score (p = 0.011). Correlation analysis showed no difference (p = 0.610) between the hip-knee-ankle and joint line congruence angle at one and five years. Sub-group analysis showed no difference in PROMs for patients placed within 3° of neutral compared to those placed > 3°. There were no revisions for tibial loosening; however, there were reports of a higher incidence of poor patella tracking and patellofemoral stiffness. Conclusion. PROMs were not impacted by postoperative alignment category. Ligamentous stability was maintained at five years with joint line obliquity. There were no revisions for tibial loosening despite a significant portion of tibiae placed in varus; however, KA executed with IDI resulted in a higher than anticipated rate of patella complications. Cite this article: Bone Jt Open 2022;3(8):656–665


Bone & Joint Open
Vol. 3, Issue 3 | Pages 211 - 217
1 Mar 2022
Hsu C Chen C Wang S Huang J Tong K Huang K

Aims. The Coronal Plane Alignment of the Knee (CPAK) classification is a simple and comprehensive system for predicting pre-arthritic knee alignment. However, when the CPAK classification is applied in the Asian population, which is characterized by more varus and wider distribution in lower limb alignment, modifications in the boundaries of arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) should be considered. The purposes of this study were as follows: first, to propose a modified CPAK classification based on the actual joint line obliquity (aJLO) and wider range of aHKA in the Asian population; second, to test this classification in a cohort of Asians with healthy knees; third, to propose individualized alignment targets for different CPAK types in kinematically aligned (KA) total knee arthroplasty (TKA). Methods. The CPAK classification was modified by changing the neutral boundaries of aHKA to 0° ± 3° and using aJLO as a new variable. Radiological analysis of 214 healthy knees in 214 Asian individuals was used to assess the distribution and mean value of alignment angles of each phenotype among different classifications based on the coronal plane. Individualized alignment targets were set according to the mean lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) of different knee types. Results. A very high concentration, 191 from 214 individuals (89.3%), were found in knee types with apex distal JLO when the CPAK classification was applied in the Asian population. By using aJLO as a new variable, the high distribution percentage in knee types with apex distal JLO decreased to 125 from 214 individuals (58.4%). The most common types in order were Type II (n = 70; 32.7%), Type V (n = 55; 25.7%), and Type I (n = 46; 21.5%) in the modified CPAK classification. Conclusion. The modified CPAK classification corrected the uneven distribution when applying the CPAK classification in the Asian population. Setting individualized TKA alignment targets according to CPAK type may be a practical method to recreate optimal LDFA and MPTA in KA-TKA. Cite this article: Bone Jt Open 2022;3(3):211–217


Bone & Joint 360
Vol. 5, Issue 4 | Pages 4 - 15
1 Aug 2016
Sehat K

Anatomical total knee arthroplasty alignment versus conventional mechanical alignment; or a combination?


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 326 - 326
1 Jul 2008
Norris M Beaver D Schmidt W Kester M Chauhan S
Full Access

Introduction: Contact stresses, derived from navigation system and conventional TKR alignments, are compared to ideally aligned component stresses. Methods: This study builds upon the work of previous studies, in which post-operative CT scans from 70 patients were utilized to extract knee component angular alignments from patients undergoing both navigation based and conventional TKR. Knee component (Stryker Orthopaedics Duracon. TM. Condylar) FE models were oriented into specific alignment positions. Tibial insert contact stresses were computed under physiologically relevant loads at various flexion angles. FEA was also performed on ideally aligned cases for comparison purposes. Results: At full extension, the median alignment of conventional TKR induces contact stresses 17.8% above ideal alignment conditions. Navigation based TKR alignment induces stresses 3.5% above ideal alignment conditions. At 45–90° flexion, conventional TKR alignment induces stresses 2.7% above ideal alignment conditions, while comparable navigation based TKR alignment induces stresses that match ideal alignment conditions. Conclusion: Navigation based TKR procedures improve knee component alignment, which decreases contact stresses in UHMWPE tibial inserts. The result is a reduction in abnormal wear patterns and expected wear rates, with an increase in the structural longevity of knee system components


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 443 - 443
1 Oct 2006
Norris M Schmidt W Wang I Beaver RA Chauhan S
Full Access

The primary objective of navigation systems is to optimise component alignment to improve total knee replacement (TKR) performance. This study utilizes finite element analysis techniques to determine how component alignment affects tibial insert contact stresses. Contact stresses were derived from navigation system and conventional TKR alignments, and were compared to ideally aligned components. This study builds upon the work of a previous study, in which post-operative CT scans from 70 patients were utilized to extract knee component angular alignments. These patients had been randomised to having either navigation based or conventional TKR. Knee component finite element models were oriented into specific alignment positions. Tibial insert contact stresses were computed under physiologically relevant loads at various flexion angles. Finite element analysis was also performed on ideally aligned cases for comparison purposes. At full extension, the median alignment of conventional TKR induces contact stresses 17.8% above ideal alignment conditions. Navigation based TKR alignment induces stresses 3.5% above ideal alignment conditions. At 45–90° flexion, conventional TKR alignment induces stresses 2.7% above ideal alignment conditions, while comparable navigation based TKR alignment induces stresses that match ideal alignment conditions. Knee component alignment is improved by navigation techniques. This predictive finite element analysis study shows markedly reduced contact stresses for navigation aligned TKR compared to conventional aligned technique. The reduction in tibial insert contact pressures could reduce abnormal polyethylene wear, increasing the structural longevity of knee system components


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 35 - 35
1 Nov 2015
Pagnano M
Full Access

Most discussions of alignment after TKA focus on defining “malalignment”; the prefix mal- is derived from Latin and refers to bad, abnormal or defective and thus by definition malalignment is bad, abnormal or defective alignment. No one then wants a “malaligned” knee. The intellectually curious, however, might switch the focus to the other end of the spectrum and ask what does an ideally aligned knee look like in 2015? Is there really one simple target value for alignment in all patients undergoing TKA? Is that target broad (zero +/−3 degrees mechanical axis) or is it a narrow target in which a penalty, in regard to durability or function, is incurred as soon as you deviate even 1 degree? Is that ideal target the same if we are evaluating the functional performance of the TKA versus the durability of the TKA or could there be 2 different targets, one that maximises function and one that maximises durability? Is that target adequately described by a single 2-dimensional value (varus/valgus alignment in the frontal plane) as measured on a static radiograph? Is that value the same if the patient has a fixed pelvic obliquity, a varus thrust in the contralateral knee or an abnormal foot progression angle?. It is revealing to ask “do we understand TKA alignment better in 2015 than in 1979…?” Maybe not. We allowed ourselves over the past 2 decades to be intellectually complacent in regard to questions of ideal alignment after TKA. The constraints on accuracy imposed by our standard total knee instruments and the constraints on assessment imposed by 2-dimensional radiographs made broad, simple targets like a mechanical axis +/− 3 degrees reasonable starting points yet we have not further worked to verify if we can do better. It is naïve to think that the complex motion at the knee occurring in 6-dimensions over time can be reduced to a single static target value like a neutral mechanical axis and have strong predictive value in regard to the success or failure of an individual TKA. We assessed 399 knees of 3 different modern cemented designs at 15 years and found that factors other than alignment were more important than alignment in determining the 15-year survival. Until more precise alignment targets can be identified for individual patients or sub-groups of patients then a neutral mechanical axis remains a reasonable surgical goal. However, the traditional description of TKA alignment as a dichotomous variable (aligned versus malaligned) defined around the broad, generic target value of 0 +/− 3 degrees relative to the mechanical axis is of little practical value in predicting the durability or function of modern TKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 69 - 69
1 Aug 2017
Rosenberg A
Full Access

THA: Approaches and Recovery; THA: Instability and Spinal Deformity; Revision for THA Instability: Dual Mobility Cups; Removal of Infected THA: Risk Factors for Complications; Tribocorrosion: Incidence in the Symptomatic THA; THA: Outcomes and Education Levels; THA: Satisfaction levels and Residual Symptoms; THA: Expectations and LOS; TKA: Kneeling and Recreation Expectations; TKA: Alignment and Long Term Survival; Patello-Femoral Arthroplasty vs TKA; Unicompartmental Knee Arthroplasty and Age; Wound Treatments and Sepsis in TJA; TKA: Managing Sepsis With I & D; Chronic Salvage in TKA: When is Enough Enough?; Revision TKA: Single Component Revision


Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims

This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy.

Methods

Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 125 - 125
1 Jan 2016
Watanabe S Sato T Tanifuji O Yamagiwa H Omori G Koga Y
Full Access

Introduction. Computed tomography (CT) based preoperative planning provides useful information for severe TKA and revision TKA cases, such as the amount of augmentation, length of stem extension and component alignment, to achieve correct alignment and joint line. In this study, we evaluated TKA alignment performed with CT preoperative planning. Materials and Methods. 7 primary TKAs for severe deformity and 3 revision TKAs were included. CT preoperative planning was performed with JIGEN (LEXI, Japan). Constrained condylar prosthesis (LCCK, Zimmer) were used in all case. For femoral component, axial alignment was decided by controlled IM rod insertion to femoral canal. Rotational alignment was decided according to anterior cortex that usually was not compromised. For tibial component, axial alignment was set to perpendicular to tibial mechanical axis. Coverage and joint line level were carefully decided. The amount of bone resection of bilateral distal and posterior femoral condyle and proximal tibia was measured, respectively. Stem extension length and offset were selected according to components position and canal filling. Amount of augmentation was also estimated bilateral distal and posterior femoral condyle, respectively. Postoperative component alignment was evaluated three-dimensionally with Knee-CAS (LEXI, Japan). Results. All femoral and tibial components were implanted within 5°in coronal and sagittal plane. All knees showed mechanical alignment within 5 degree from neutral. One of 10 TKAs needed femoral component size down, and two of 20 stems needed size change


Bone & Joint Open
Vol. 3, Issue 1 | Pages 29 - 34
3 Jan 2022
Sheridan GA Moshkovitz R Masri BA

Aims

Simultaneous bilateral total knee arthroplasty (TKA) has been used due to its financial advantages, overall resource usage, and convenience for the patient. The training model where a trainee performs the first TKA, followed by the trainer surgeon performing the second TKA, is a unique model to our institution. This study aims to analyze the functional and clinical outcomes of bilateral simultaneous TKA when performed by a trainee or a supervising surgeon, and also to assess these outcomes based on which side was done by the trainee or by the surgeon.

Methods

This was a retrospective cohort study of all simultaneous bilateral TKAs performed by a single surgeon in an academic institution between May 2003 and November 2017. Exclusion criteria were the use of partial knee arthroplasty procedures, staged bilateral procedures, and procedures not performed by the senior author on one side and the trainee on another. Primary clinical outcomes of interest included revision and re-revision. Primary functional outcomes included the Oxford Knee Score (OKS) and patient satisfaction scores.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 113 - 113
1 Dec 2016
Vince K
Full Access

No, Neutral mechanical axis has never been regarded as “necessary” to the success of TKA. In fact it has never been established as “ideal” with published data. Tibial femoral alignment after TKA is important, but it is also an issue that we do not understand completely. Neutral mechanical alignment refers to the relationship between the mechanical axes of the femur and tibia as shown on full length radiographs. “Neutral” means that these axes are collinear, i.e. that a line may be drawn from the center of the hip to the center of the ankle and it will intersect the center of the knee joint. The allure of the “straight line” has led many surgeons to regard a neutral mechanical axis as “perfection” for TKA surgery, but indeed, it is not the usual “normal” alignment for most human knees, nor is it the target for many conventional knee replacements. The “neutral mechanical axis” represents OVERCORRECTION for most knees. Moreland demonstrated in 1987 that few human knee joints are naturally aligned “in neutral”, but with the line from center of hip to center of ankle passing through the medial compartment. This tendency to relative varus mechanical axis in most human knees was corroborated by Bellemans et al in 2012. They substituted the word “constitutional varus” for what would otherwise be known as “normal alignment”. In general, patients with pathologic or significant varus alignment, whose arthroplasties have been performed competently, are at greatest risk for failure by wear, osteolysis and loosening. This is the prototypical failure mechanism that pre-occupied the surgeons responsible for making knee arthroplasty successful in the 1970s. The first paper to identify varus TKA alignment and failure due to loosening was Lotke and Ecker in 1977. They worked from short radiographs and ushered in an era of careful attention to valgus TKA alignment-not neutral alignment. Correction of varus deformity combined with ligament balancing was probably responsible for making condylar type knee arthroplasties work durably in the early days. Full length radiographs, used by Kennedy and White in 1987 to study alignment in unicompartmental arthroplasties, provide a more sophisticated method of evaluating knee alignment. These studies must be aligned with correct rotation to be valid. Computerised navigation was probably responsible for some surgeon's dedication to the neutral mechanical axis. The study of Parratte et al from Mayo has received much attention and argued that a neutral mechanical axis did NOT improve success rates at 15 years. It should be noted that these TKA's were expertly performed and even the less well-aligned cases were not “excessively” malaligned. This study does not state that alignment is irrelevant to the success of TKA, but rather that a range of alignments (with stability) might be expected to produce a durable arthroplasty. Concurrent with these developments has been an interest in “under-correcting” knee deformity or allowing osseous anatomy (with compensation for cartilage loss) guide component position. In truth, it is inaccurate to describe conventional “align and balance” techniques as necessarily seeking a neutral mechanical axis. Most classical alignment techniques do, however, alter the angle of component position from the original articular surface angles and theoretically may not function as well with the native soft tissue environment. Surgeons who would align the TKA identically to the arthritic knee may credit previous generations with improving the technology such that this is a possibility. If every patient is to be aligned with this technique, however, this suggests that soft tissue pathology does not exist. As with all complex issues, glib answers are to be avoided and deep analysis is appropriate


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 90 - 90
1 May 2016
Twiggs J Fritsch B Roe J Liu D Dickison D Theodore W Miles B
Full Access

Introduction. Total Knee Arthroplasty (TKA) is an established procedure for relieving patients of pain and functional degradation associated with end-stage osteoarthritis of the knee. Historically, alignment of components in TKA has focused on a ‘reconstructive’ approach neutral to the mechanical axes of the femur and tibia coupled with ligament balancing to achieve a balanced state. More recently, Howell et al. have proposed an alternate approach to TKA alignment, called kinematic alignment. (Howell, 2012) This approach seeks to position the implants to reproduce underlying, pre-disease state femoral condylar and tibial plateau morphology, and in doing is ‘restorative’ of the patients underlying knee kinematic behaviour rather than ‘reconstructive’. While some promising early clinical results have been reported at the RCT level (Dosset, 2014), in vivo comparisons of the kinematic outcome achieved at patient specific levels with the two alignment techniques remain an impossibility. The aim of this research is to develop and report preliminary findings of a means of simulating both alignment techniques on a number of patients. Method. In 20 TKR subjects, 3D geometry of the patient was reconstructed from preoperative CT scans, which were then used to define a patient specific soft tissue attachment model. The knees were then modelled passing through a 0 to 140 degree flexion cycle post TKR under each alignment technique. A multi-radius CR knee design has been used to model the TKA under each alignment paradigm. Kinematic measurements of femoral rollback, internal to external rotation, coronal plane joint torque, patella shear force and varus-valgus angulation are reported at 5, 30, 60, 90 and 120 degrees of flexion. Student's paired 2 sample t-tests are used to determine significant differences in means of the kinematic variables. Results. The mean femoral component alignment to the femoral mechanical axis was 3.3° ± 2.2° valgus and 2.3° ± 1.6° internal to the surgical transepicondylar axis in the kinematically aligned models. The mean tibial component alignment to the tibial mechanical axis was 3.5° ± 2.4° varus and 7.6° ± 6.5° internal to Insall's tibial anterior-posterior axis. The mechanically aligned model sims were all neutral to both axes. As a result of the relative match in femoral valgus & tibial varus component angulation, mean long leg varus at 5° degrees through 60° is not significantly different from the mechanically aligned knees, though with much higher variance in the kinematically aligned group. Statistically significant differences were observed at 90 and 120 degrees, where the long leg angle is dictated by posterior condylar contact on the femur rather than distal. Other statistically significant differences in mean results were observed, notably for coronal plain joint torque (at 5° and 30°, mechanical alignment higher). Discussion. Kinematic aligned TKR is conceptually a very different operation to mechanically aligned TKR, targeting different biomechanical goals. While evidence exists for improved clinical results in patients at a broad level, simulation tools at a patient specific level are a platform that, with development, could distinguish between patients benefiting most from a restorative or a reconstructive approach to their surgery


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 42 - 42
1 Dec 2017
Steimer D Suero E Luecke U Stuebig T Krettek C Liodakis E
Full Access

INTRODUCTION. To test whether there are differences in postoperative mechanical and component alignment, and in functional results, between conventional, navigated and patient-specific total knee arthroplasties in a low-volume centre?. MATERIAL AND METHODS. Retrospective cohort study of 391 patients who received conventional, navigated or patient- specific primary cemented TKA in a low-volume hospital. RESULTS. The risk of mechanical alignment outliers was 89% lower in the navigated group compared to the conventional TKA group. There was a 63% lower risk of femoral component malalignment and a 66% lower risk of tibial component malalignment in the navigated group. No significant reduction in the risk of malalignment was seen in the patient-specific group. Total WOMAC and Oxford scores were no different between the three techniques. The patient-specific group reported better WOMAC pain scores. PSI TKA was 33% more expensive than conventional TKA and 28% more expensive than Navigated TKA. DISCUSSION. Navigated TKA improved alignment, but neither navigated nor patient-specific TKA improved functional outcomes. Patient-specific TKA was more expensive, with little additional benefit. Clinical relevance: The routine use of patient-specific instrumentation in low-volume centers is not supported by the currently available data


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 327 - 327
1 Sep 2005
Sikorski J
Full Access

Introduction and Aims: The Western Australian experience with the introduction and use of two different computer assistance systems for total knee replacement is presented. Method: A multi-parameter CT assessment of TKR alignment has been devised. This has been used in a controlled cadaver study, a randomised controlled patient trial, two prospective clinical and radiological audits using the Stryker and the BrainLAB systems. A prospective audit of non-computer assisted TKRs is available for comparison. A total of 240 patients have had either primary or revision computer-assisted TKRs. Results: Both computer assistance systems provide some advantages in alignment over the non-CAS TKRs. They provide excellent control in revision operations where bone loss needs to be augmented with bone graft. There is however significant morbidity associated with anchoring pin sites. There are pitfalls in accepting software upgrades. The cost-benefit analysis still needs to done. Conclusion: Computer-assisted TKR has made a promising start but it is still in its infancy and the current versions may not be ready for widespread introduction


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 34 - 34
1 Sep 2012
Corten K Jonkergouw F Bartels W Van Lenthe H Bellemans J Simon J Vander Sloten J
Full Access

Summary sentence. The bowing of the femur defines a curvature plane to which the proximal and distal femoral anatomic landmarks have a predictable interrelationship. This plane can be a helpful adjunct for computer navigation to define the pre-operative, non-diseased anatomy of the femur and more particularly the rotational alignment of the femoral component in total knee arthroplasty (TKA). Background and aims. There is very limited knowledge with regards to the sagittal curvature -or bowing- of the femur. It was our aim (1) to determine the most accurate assessment technique to define the femoral bowing, (2) to define the relationships of the curvature plane relative to proximal and distal anatomic landmarks and (3) to assess the position of femoral components of a TKA relative to the femoral bowing. Materials and methods. Four independent algorithms were developed and tested on 3D models of 18 cadaveric femora. A sensitivity study showed that a bisector-based method supplied the most stable results. In order to verify if the curvature plane can be used for TKA alignment, the anteversion angle was determined relative to this plane and compared with anteversion angles defined using the coronal plane. Results. The average curvature of the cadaveric femora was 895.85 mm (SD = 184.53 mm). The mean anteversion angle calculated along the projected mechanical or anatomical axis in the coronal plane were 8.2+/−5.2° and 7.6+/− 4.8°. These angles calculated along the projected mechanical or anatomical axis in the curvature plane were 8.2+/−5.2° and 5.2+/−4.8° respectively (p>0.05). Assessment of the component placement relative to the mechanical axis showed that in the coronal plane, an average deviation of 1.84° was measured. In the sagital plane, the average deviation from the mechanical axis was 2.01°. The components were placed in 1 to 2° of extension relative to the femoral bowing. Discussion. A new and stable algorithm was successfully developed to determine the curvature of the femoral shaft. This curvature was comparable to 2 previously reported curvatures. Our study also demonstrates a predictable interrelationship between the femoral shaft curvature on one side and the rotation of the distal femur on the other side. This finding is of great interest in view of a recent trend amongst knee surgeons to aim at anatomical restoration of the patient's original anatomy. Patient matched cutting blocks as well as patient specific implants are today increasingly considered in daily practice in an attempt to restore the patient's natural anatomy and biomechanics. Computational methods to reverse engineer the pre-diseased status of the knee joint regarding its anatomy and orientation are therefore of great importance. The findings from our study suggest that the femoral shaft's curvature is a helpful adjunct to this. Furthermore, abnormal rotational alignment of an axially malaligned component can be assessed accurately with this new reference plane. However, further research on implementing this algorithm and this plane into clinical practice is mandatory. However, further research on implementing this into clinical practice is required