The course of secondary fracture healing typically consists of four major phases including inflammation, soft and hard callus formation, and bone remodeling. Callus formation is promoted by mechanical stimulation, yet little is known about the healing
Mesenchymal stem cells (MSCs) have the potential to repair and regenerate damaged
Introduction. We studied free (= local powder) tobramycin and doxycycline, and controlled release (= local lipid bilayer) doxycycline formulations in a rat model representing a generic joint infection. We . hypothesized. that evidence of infection (quantitative colony forming units (CFU), qualitative SEM, histopathology) (1a) would be reduced with local vs. systemic antibiotic, (1b) any antibiotic would be superior to control (2) there would be a difference among antibiotics, and (3) antibiotic would not be detectable in serum at 4-week euthanasia. Methods. Study groups. included infected and non-infected (1) control, (2) systemic ceftriaxone (daily), (3) local tobramycin, (4) local doxycycline and (5) controlled release doxycycline. With IACUC approval, (10 rats/group; power =0.8), 50-μl, 10×4 CFU Staphylococcus aureus, slowly injecting into distal femoral medullary canal, reliably created joint infection. Antibiotic formulation was introduced locally into cavity and joint, pin was inserted, and tissues closed. After 4-weeks, serum, pin, bone and synovium were obtained. CFU/ml of bone and synovium were quantified using macrotiter method. SEM imaged biofilm on surface of pin, histopathology identified
Introduction. The combined incidence of anatomic (aTSA) and reverse total shoulder arthroplasties (rTSA) in the US is 90,000 per annum and rising. There has been little attention given to potential long-term complications due to periprosthetic tissue reactions to implant debris. The shoulder has been felt to be relatively immune to these complications due to lower acting loads compared to other joint arthroplasties. In this study, retrieved aTSAs and rTSAs were examined to determine the extent of implant damage and to characterize the nature of the corresponding periprosthetic
Objectives. Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo. Methods. ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry. Results. Calcium release doubled in the EB-treated group before returning to a level seen in untreated samples at 28 weeks. Extensive bone growth was observed around the perimeter of all implant types, along with limited osteoclastic activity. No statistically significant differences between comparative groups was identified. Conclusion. The higher than normal dose of EB used for surface modification did not adversely affect
Wear and corrosion debris generated from total hip replacements (THR) can cause adverse local tissue reactions (ALTR) or osteolysis, often leading to premature implant failure. The
The aims of the study were to report for a cohort aged younger than 40 years: 1) indications for HRA; 2) patient-reported outcomes in terms of the modified Harris Hip Score (HHS); 3) dislocation rate; and 4) revision rate. This retrospective analysis identified 267 hips from 224 patients who underwent an hip resurfacing arthroplasty (HRA) from a single fellowship-trained surgeon using the direct lateral approach between 2007 and 2019. Inclusion criteria was minimum two-year follow-up, and age younger than 40 years. Patients were followed using a prospectively maintained institutional database.Aims
Methods
Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage. After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems.Aims
Methods
Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery. Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed.Aims
Methods
Introduction. Little is known about the relationship between head-neck corrosion and its effect on periprosthetic tissues and distant organs in the majority of patients hosting apparently well-functioning devices. We studied the degree and type of taper damage and the histopathologic response in periprosthetic tissue and distant organs. Methods. A total of 50 contemporary THRs (34 primary, 16 revision) retrieved postmortem from 40 patients after 0.4–26 years were studied. Forty-three femoral stems were CoCrMo and 7 were Ti6Al4V. In every case, a CoCrMo-alloy head articulated against a cementless polyethylene cup (19 XLPE and 31 UHMWPE). H&E and IHC sections of the joint pseudocapsules and liver were graded 1–4 for the intensity of various inflammatory cell infiltrates and tissue necrosis. The nature of the
Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy. Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq).Aims
Methods
A challenging problem in ultrasound based orthopaedic surgery is the identification and interpretation of bone surfaces. Recently we have proposed a new fully automatic ultrasound bone surface enhancement filter in the context of spine interventions. The method is based on the use of a Gradient Energy Tensor filter to construct a new feature enhancement metric, which we call the Local Phase Tensor. The goal of this study is to provide further improvements to the proposed filtering method by incorporating a-priori knowledge about the physics of ultrasound imaging and salient grouping of enhanced bone features. Typical ultrasound scan of the spine, there is a large soft tissue interface present close to the transducer surface with high intensity values similar to those of the bone anatomy response. Typical ultrasound image segmentation or enhancement methods will be affected by this thick soft
Introduction. Recent advances in nano-surface modification technologies are improving osseointegration response between implant materials and surrounding tissue. Living cells have been shown to sense and respond to cues on the nanoscale which in turn direct stem cell differentiation. One commercially practical surface treatment technique of particular promise is the modification of titanium implant surfaces via electrochemical anodization to form arrays of vertically aligned, laterally spaced titanium oxide (TiO2) nanotubes on areas of implants where enhanced implant–to-bone fixation is desired. Foundational work has demonstrated that the TiO2 nanotube surface architecture significantly accelerates osteoblast cell growth, improves bone-forming functionality, and even directs mesenchymal stem cell fate. The initial in vitro osteoblast cell response to such TiO2 nanotube surface treatments and corresponding in vivo rabbit
The suture properties associated with a successful tendon repair are: high tensile strength, little
No, not my mother, but metal-on-metal (MoM) hips! My involvement in the DEFENSE side of MoM hips has allowed me the luxury of reflection and continued study on the basic and clinical science of this particular wear couple. Much of what I have learned is relevant to other articular couples, and might help you in your next THR. No amount of in vitro laboratory testing can replicate or predict in vivo behavior of a particular wear couple. (Mother Nature always has something new to teach us!) Although MoM implants went through complete pre-market evaluation and approval in both the US and EU, the process is inadequate and does not assure safety or success of new designs and materials. Two year results obtained in pre-market (IDE) studies are of insufficient follow-up for accurate evaluation of new materials or designs. Be conservative! Be neither the first, nor the last, to embrace new technology!. Clinical experience and retrieval analysis of MoM devices has revealed factors that are not as apparent for other wear couples such as metal-on-polyethylene (MoP), or ceramic-on-ceramic (CoC). For instance:. All THR's are at risk of micro-lateralization, or displacement of the femoral head from the acetabular wear couple during swing phase, resulting in edge loading. In addition, impingement or displacement related to component malposition or failure to balance the soft tissues about the hip can produce subluxation, producing edge loading and accelerated wear. In the case of MoM implants, the tribology and wear properties of MoM produce identifiable wear scars; all MoM designs appear to be subject to these phenomena. However, evidence now exists that both MoP and CoC wear couples are at similar risk for accelerated wear, although at different rates than MoM. Hard-on-hard wear couples (ceramic, metal) are less tolerant of edge loading than hard-on-soft (e.g., MoP or CoP) wear couples, and therefore require a higher degree of surgical precision in implant placement and reconstruction of the soft tissue balance of the hip. One of the previously unrecognised factors that can change relative implant position (and therefore, the risk of subluxation or edge loading) is the effect of the lumbar spine on apparent acetabular component position (e.g., changes between sitting, standing, or lying prone). This is largely due to the effect of lumbar spine flexibility, as shown in both orthogonal x-ray (“EOSr”) studies, and dynamic CAT scan studies. There is currently no validated algorithm or technique to assess these factors; however, surgeon awareness and at least clinical assessment preoperatively may result in better positioning of implants. Femoral component position can also have a major effect of the risk of impingement or subluxation of the femoral head; the combined anteversion concept of Dorr et al. should be rigorously adhered during THR. Other issues such as fretting corrosion associated with large diameter femoral heads and
Introduction. Successful tendon repairs are reliant on the suture material having high tensile strength, no or little
Introduction: The suture properties associated with a successful tendon repair are: high tensile strength, little
Metal and their alloys have been widely used as implantable materials and prostheses in orthopaedic surgery. However, concerns exist as the metal nanoparticles released from wear of the prostheses cause clinical complications and in some cases result in catastrophic host
Metal allergy in knee arthroplasty patients is a controversial topic. We aimed to conduct a scoping review to clarify the management of metal allergy in primary and revision total knee arthroplasty (TKA). Studies were identified by searching electronic databases: Cochrane Central Register of Controlled Trials, Ovid MEDLINE, and Embase, from their inception to November 2020, for studies evaluating TKA patients with metal hypersensitivity/allergy. All studies reporting on diagnosing or managing metal hypersensitivity in TKA were included. Data were extracted and summarized based on study design, study population, interventions and outcomes. A practical guide is then formulated based on the available evidence.Aims
Methods
During the last decades numerous studies have reported the critical impact of physical activity on bone repair. While most studies have evaluated the