Aims. Ultrasound-guided injection techniques are expected to enhance therapeutic efficacy for
Glucose-insulin-potassium (GIK) is protective following cardiac myocyte ischaemia-reperfusion (IR) injury, however the role of GIK in protecting skeletal muscle from IR injury has not been evaluated. Given the similar mechanisms by which cardiac and skeletal muscle sustain an IR injury, we hypothesized that GIK would similarly protect skeletal muscle viability. A total of 20 C57BL/6 male mice (10 control, 10 GIK) sustained a hindlimb IR injury using a 2.5-hour rubber band tourniquet. Immediately prior to tourniquet placement, a subcutaneous osmotic pump was placed which infused control mice with saline (0.9% sodium chloride) and treated mice with GIK (40% glucose, 50 U/l insulin, 80 mEq/L KCl, pH 4.5) at a rate of 16 µl/hr for 26.5 hours. At 24 hours following tourniquet removal, bilateral (tourniqueted and non-tourniqueted) gastrocnemius muscles were triphenyltetrazolium chloride (TTC)-stained to quantify percentage muscle viability. Bilateral peroneal muscles were used for gene expression analysis, serum creatinine and creatine kinase activity were measured, and a validated murine ethogram was used to quantify pain before euthanasia.Aims
Methods
Compartment syndrome (CS) is a unique form of skeletal muscle ischaemia. N-acetyl cysteine (NAC) is an anti-oxidant in clinical use, with beneficial microcirculatory effects. Sprague-Dawley rats (n=6/group) were randomised into Control, CS and CS pre-treated with NAC (0.5g/kg i.p. 1 hr prior to induction) groups. In a post-treatment group NAC was administered upon muscle decompression. Cremasteric muscle was placed in a pressure chamber in which pressure was maintained at diastolic minus 10 mm Hg for 3 hours inducing CS, muscle was then returned to the abdominal cavity. At 24 hours and 7 days post-CS contractile function was assessed by electrical stimulation. Myeloperoxidase (MPO) activity was assessed at 24-hours. CS injury reduced twitch (50.4±7.7 vs 108.5±11.5, p<0.001; 28.1±5.5 vs. 154.7±14.1, p<0.01) and tetanic contraction (225.7±21.6 vs 455.3±23.3, p<0.001; 59.7±12.1 vs 362.9±37.2, p<0.01) compared with control at 24 hrs and 7 days respectively. NAC pre-treatment reduced CS injury at 24 hours, preserving twitch (134.3±10.4, p<0.01 vs CS) and tetanic (408.3±34.3, p<0.01 vs CS) contraction. NAC administration reduced neutrophil infiltration (MPO) at 24 hours (24.6±5.4 vs 24.6±5.4, p<0.01). NAC protection was maintained at 7 days, preserving twitch (118.2±22.9 vs 28.1±5.5, p<0.01) and tetanic contraction (256.3±37 vs 59.7±12.1, p<0.01). Administration of NAC at decompression also preserved muscle twitch (402.4±52; p<0.01 versus CS) and tetanic (402.4±52; p<0.01 versus CS) contraction, reducing neutrophil infiltration (24.6±5.4 units/g; p<0.01). These data demonstrate NAC provided effective protection to skeletal muscle from CS induced injury when given as a pre- or post-decompression treatment.
Abstract. Objective. The aim of our systematic review was to report the latest evidence on the effects of CoCr particles on local soft tissue with a focus on its clinical relevance. Methods. PubMed, Embase, and Cochrane Library databases were screened to perform an extensive review. Inclusion criteria were studies of any level of evidence published in peer-reviewed journals reporting clinical and preclinical results written in English. Relative data were extracted and critically analyzed. PRISMA guidelines were applied, and the risk of bias was assessed, as was the methodological quality of the included studies. Results. 30 studies were included after applying the inclusion and exclusion criteria. Of these, 24 were preclinical studies (18 in vitro human studies, 6 animal modal studies, including 3 in vitro and 3 in vivo), 5 were clinical studies and 1 was previous review on similar topic. The presence of metal ions causes cell damage by reducing cell viability, inducing DNA damage, and triggering the secretion of cytokines. Mechanisms of apoptosis, autophagy and necrosis are responsible for the inflammatory reaction observed in ALTR. Conclusion. The available literature on the effects of CoCr particles released from MoM implants shows that metal debris can cause
Various reports confirm that elevations in serum markers associated with
Scar tissue formation secondary to acute muscle injury, surgical wounding and compartment syndrome can result in significant functional impairment and predispose to further injury. The source of fibroblasts, and the molecular mechanisms driving their activation and persistence in skeletal muscle fibrosis are not known. We hypothesized that cells expressing PDGFRβ become fibroblasts in response to injury and that targeting αv integrins in these cells reduces skeletal muscle fibrosis. We used double-fluorescent reporter mice to demonstrate that cells expressing PDGFRβ become activated myofibroblasts in response to cardiotoxin (CTX) induced
Aims: Pharmocological modulation of skeletal muscle reperfusion injury after an ischaemic insult may improve limb salvage rates and prevent the associated systemic sequelae. Activated Protein c (APC) is an endogenous anti-coagulant with anti-inflammatory properties. The purpose of our study was to evaluate the effects of APC on skeletal muscle ischaemia reperfusion injury and to examine the direct effects of APC on neutrophil activation. Methods: Adult male Sprague Dawley rats (n=30) were randomised into three groups: control group, I/R group treated with normal saline and I/R treated with APC. Bilateral hind-limb ischaemia was induced by rubber ban application proximal to the level of the greater trochanters for two hours. Treatment groups received either normal saline or APC prior to tourniquet release. Following twelve hours reperfusion, the tibialis anterior was dissected and muscle function assessed electrophysiologically by electrical field stimulation. The animals were then sacrificed and skeletal muscle harvested for evaluation.
Objectives: Skeletal muscle trauma leads to severe functional deficits. Present therapeutic treatments are unsatisfying and insufficient posttraumatic regeneration is a problem in trauma and orthopaedic surgery. Mesenchymal stem cell (MSC) therapy is a promising tool in the regeneration of muscle function after severe trauma. Our group showed increased contraction forces compared to a non-treated control group 3 weeks after MSC transplantation (TX) into a skeletal muscle trauma. In addition we demonstrated a dose-response relationship of the amount of MSC and force enhancement. We furthermore investigated the fate of the transplanted MSC labelled with very small iron oxide particles using 7 Tesla-MRI. Histological analysis revealed fusion events between existing myofibers but only to a low amount. The increase of muscle force can not be explained by these events only. Before further steps are taken the impact of paracrine effects and the homing to the site of trauma of the MSC has to be evaluated. Experimental studies about the functional regeneration of traumatized skeletal muscule after systemic MSC-TX do not exist. Methods: 36 female SD-rats received open crush trauma of the left soleus muscle. One week after trauma 2.5 x 106 autologous MSC, harvested from tibial biopsies, were transplanted intraarterially (i.a., femoral arte-ria, group 1) or intravenously (i.v., tail vein, group 2) (n=18). Control animals received saline (i.a.: group 3; i.v.: group 4) (n=18). Histological analysis and biomechanical evaluation by in vivo muscle force measurement was performed 3 weeks after TX. Results: Twitch stimulation of the healthy right soleus muscles resulted in a contraction force of 0.52±0.14 N. Forces of tetanic contraction in the uninjured muscles reached 0.98±0.27 N. The i.a. MSC-TX improved the muscle force of the injured soleus significantly compared to control (twitch: 82,4%, p=0.02, tetany: 61.6%, p=0.02). Contraction forces of muscles treated i.v. (MSC vs. saline) showed no significant difference. The histological analysis showed no differences in the amount of fibrotic tissue. Conclusions: The presented study demonstrates the effect of systemic MSC-TX in the treatment of severe
The aim of the HIPGEN consortium is to develop the first cell therapy product for hip fracture patients using PLacental-eXpanded (PLX-PAD) stromal cells. HIPGEN is a multicentre, multinational, randomized, double-blind, placebo-controlled trial. A total of 240 patients aged 60 to 90 years with low-energy femoral neck fractures (FNF) will be allocated to two arms and receive an intramuscular injection of either 150 × 106 PLX-PAD cells or placebo into the medial gluteal muscle after direct lateral implantation of total or hemi hip arthroplasty. Patients will be followed for two years. The primary endpoint is the Short Physical Performance Battery (SPPB) at week 26. Secondary and exploratory endpoints include morphological parameters (lean body mass), functional parameters (abduction and handgrip strength, symmetry in gait, weightbearing), all-cause mortality rate and patient-reported outcome measures (Lower Limb Measure, EuroQol five-dimension questionnaire). Immunological biomarker and in vitro studies will be performed to analyze the PLX-PAD mechanism of action. A sample size of 240 subjects was calculated providing 88% power for the detection of a 1 SPPB point treatment effect for a two-sided test with an α level of 5%.Aims
Methods
Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics. Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair.Objectives
Methods