Aims.
Aims. For rare cases when a tumour infiltrates into the hip joint, extra-articular resection is required to obtain a safe margin. Endoprosthetic reconstruction following tumour resection can effectively ensure local control and improve postoperative function. However, maximizing bone preservation without compromising surgical margin remains a challenge for surgeons due to the complexity of the procedure. The purpose of the current study was to report clinical outcomes of patients who underwent extra-articular resection of the hip joint using a custom-made osteotomy guide and 3D-printed endoprosthesis. Methods. We reviewed 15 patients over a five-year period (January 2017 to December 2022) who had undergone extra-articular resection of the hip joint due to malignant tumour using a custom-made osteotomy guide and 3D-printed endoprosthesis. Each of the 15 patients had a single lesion, with six originating from the acetabulum side and nine from the proximal femur. All patients had their
Background. Surgical site infection following spine surgery is associated with increased morbidity, mortality and increased cost for the health care system. The reported pooled incidence is 3%. Perioperative antibiotic prophylaxis is a key factor in lowering the risk of acquiring an infection. Previous studies have assessed perioperative cefuroxime concentrations in the anterior column of the cervical spine with an anterior surgical approach. However, the majority of surgeries are performed in the
Numerous studies have examined the biomechanical properties of the vertebral body following PMMA cement augmentation for the treatment of osteoporotic vertebral body fractures. To date there is no published literature reporting the effects of Vertebroplasty on internal intervertebral disc biomechanics which in turn have been shown to reflect loading patterns of the vertebral column. To study effects of PMMA cement augmentation of vertebral body fractures on intervertebral disc biomechanics using stress prolifometry to assess differential anterior and posterior vertebral column loading. Eight cadaveric motion segments were individually loaded on a hydraulically powered materials testing machine under 1.5kN of axial compression. Following fracture induction the lower vertebral body underwent Vertebroplasty. Profiles of the vertically acting compressive stress were obtained by pulling a pressure sensitive transducer along the mid-sagittal diameter of the intervertebral disc. “Stress profile” measurements were obtained before fracture, following fracture, and after vertebro-plasty both in extension and flexion. Stress profiles were integrated over area to calculate the compressive force across the disc. The compressive load acting on the neural arch was calculated by subtracting the disc force from the applied 1.5kN load. In flexed postures
Operative approaches to the acetabulum are generally classified into anterior, posterior, extensile or combined approaches. The choice of approach depends upon the fracture pattern and the amount of relative displacement affecting the anterior and posterior bony structures. Occasionally, extensile or combined surgical approaches are indicated for the treatment of complex fracture patterns with extensive involvement of both the anterior and posterior acetabular anatomy. However, it is believed that these approaches may be associated with higher complication rates than more limited surgical approaches. The ilioinguinal approach described by Letournel is routinely employed in the treatment of anterior column, anterior wall, anterior
Purpose of the study. Percutanous acetabular surgery is a new and developing technique in fixation of acetabulum fractures. The most common screw used is the anterior column screw that traverses anterograde or retrograde through the anterior column of the acetabulum. Standard height and width calculations derived from CT scans do not take the trajectory of the screw into consideration. They have been shown to exaggerate the available safe bone corridor for screw passage.
The Paprosky acetabular bone defect classification system and related algorithms for acetabular reconstruction cannot properly guide cementless acetabular reconstruction in the presence of porous metal augments. We aimed to introduce a rim, points, and column (RPC)-oriented cementless acetabular reconstruction algorithm and its clinical and radiographic outcomes. A total of 123 patients (128 hips) were enrolled. A minimum 5-year radiographic follow-up was available for 96 (75.8%) hips. The mean clinical and radiographic follow-up durations were 6.8±0.9 (range: 5.2–9.2) and 6.3±1.9 (range: 5.0–9.2) years, respectively. Harris hip score (HHS) improved significantly from 35.39±9.91 preoperatively to 85.98±12.81 postoperatively (P<0.001). Among the fixation modes, 42 (32.8%) hips were reconstructed with rim fixation, 42 (32.8%) with three-point fixation without point reconstruction, 40 (31.3%) with three-point fixation combined with point reconstruction, and 4 (3.1%) with three-point fixation combined with pelvic distraction. Complementary medial wall reconstruction was performed in 20 (15.6%) patients. All acetabular components were radiographically stable. Nine-year cumulative Kaplan–Meier survival rates for 123 patients with the endpoint defined as periprosthetic joint infection, any reoperation, and dissatisfaction were 96.91% (confidence interval [CI]: 86.26%, 99.34%), 97.66% (CI: 92.91%, 99.24%), and 96.06% (CI: 86.4%, 98.89%), respectively. Cup stability in cementless acetabular reconstruction depends on rim or three-point fixation. The continuity of the anterior and
Introduction. Bernese periacetabular osteotomy (PAO) repositions the acetabulum to increase femoral head coverage (FHC) in hip dysplasia. Currently, there is a paucity of objective peri-operative metrics to plan for optimal acetabular fragment repositioning. The MSk Lab Hip 3D Planner (MSkL-HP) measures acetabular morphology and simulates PAO cuts to achieve optimal FHC. We evaluated how adjusting location and orientation of cutting planes can alter FHC. Method. MSkL-HP simulated 274 feasible PAOs on four dysplastic hips. Femoroacetabular anatomy was landmarked to simulate cutting planes.
Introduction: Reversed prostheses implantation requires screwing of the glenoid component with prefixed angles. This study is to determine anatomical angles of scapula that take part in reversed prostheses implantation. Material and method: Seventy-three 3-dimensional computed tomography of the scapula and 108 scapular dry specimens were analyzed. Mean age of the CT-3D serie was of 52.59 years old (ranging from 16 to 84). There were 46 females and 27 males. The following measures were made on each patient: length of the neck of the inferior glenoid, angle between the glenoid surface and the upper
Pelvic discontinuity is defined as a separation of the ilium superiorly from the ischiopubic segment inferiorly. In 2018, the main management options include the following: 1) hemispheric acetabular component with
Complex spinal deformities can cause pain, neurological symptoms and imbalance (sagittal and/or coronal), severely impairing patients’ quality of life and causing disability. Their treatment has always represented a tough challenge: prior to the introduction of modern internal fixation systems, the only option was an arthrodesis to prevent worsening of the deformity. Then, the introduction of pedicle screws allowed the surgeons to perform powerful corrective manoeuvres, distributing forces over multiple levels, to which eventually associate osteotomies. In treating flexible coronal deformities, in-ternal fixation and corrective manoeuvres may be sufficient: the combination of high density pedicle screws and direct vertebral rotation revolutionized surgical treatment of scoliosis. However, spinal osteotomies are needed for correcting complex rigid deformities; the type of osteot-omy must be chosen according to the aetiology, type and apex of the deformity. When dealing with large radius deformities, spread over multiple levels and without fusion, multiple
Using the Mayo Clinic definition (>62mm in women and >66mm in men), the “jumbo acetabular component” is the most successful method for acetabular revisions now, even in hips with severe bone loss. There are numerous advantages: surface contact is maximised; weight-bearing is distributed over a large area of the pelvis; the need for bone grafting is reduced; and usually, hip center of rotation is restored. The possible disadvantages of jumbo cups include: may not restore bone stock; may ream away
Modern oncologic treatments have resulted in an increase of the duration of life of patients with cancer; however the onset of a vertebral metastasis results in a decrease of the quality of life. The aim of surgery is to increase or restore the quality, but not the duration of life. The decision for surgery depends mainly on the functional impairment, and more incidentally on the primitive tumor, the metastatic diffusion, and the general status of the patient. Decision for operative technique depends on the anatomical patterns of the metastasis, considered with reference to the three columns classification of Denis. The anterior column initial involvement results in instability with mechanical pain, increased by standing and coughing, decreased by supine position, similar to pain experienced with traumatic instability. The middle column involvement results in foraminal extension with radicular pain. The initial
This report reviews the long-term results of treating acetabula with unusually severe problems, such as pelvic discontinuity or major column loss after failed total hip arthroplasty (THA) and reconstruction problems. Loss of acetabular bone stock results from removal of bone during the original procedure, prosthetic failure, and osteolysis. In massive structural failure, the acetabular rim, quadrilateral plate, and associated columns become deficient. At worst, this may be combined with pelvic discontinuity and disruption of the ilium and ischium. Prosthetic protrusio may result from fixation loss and be associated with scarring of the femoral vessels, femoral nerve, ureter and bowel. A variety of implants has been used to in ace-tabular reconstruction. The results are often poor because of insufficient bone stock to support the implant. In a consecutive series of 251 THA revisions done between 1988 and 1996, 17 patients were treated for major pelvic column loss, pelvic discontinuity or both. In five patients, a posterolateral approach without trochanteric osteotomy was used. The extensile triradiate approach with ilioinguinal extension was used in 12 patients in whom severe prosthetic protrusio increased the risk of intrapelvic iatrogenic injury. A long anterior column pelvic plate was applied. A posteriorly placed AO 4.5-mm pelvic reconstruction plate with 10 to 12 holes was used in nine cases of pelvic discontinuity and in five cases of
The use of intramedullary column screws in the treatment of acetabular fractures is becoming more widely utilized. The development of percutaneous methods to insert these screws under image intensifier guidance is one of the main reasons for their increased use. Few groups are navigating insertion of these screws. The available screws are cannulated 6.5–8 mm screws. Most surgeons prefer using 3.2 mm guide wires to reduce deflection. With a shank diameter of 4.5 mm, 3.2 mm cannulation significantly weakens the screws. We postulated that both columns, specially the
Introduction and Aims: Traditional treatment for adolescent hyperkyphosis, including Scheuermann’s disease, has included apical anterior spine release/fusion (ASF) prior to posterior instrumented fusion. We wished to reassess the need for ASF when using a
Using the Mayo Clinic definition (>62mm in women and >66mm in men), the “jumbo acetabular component” is the most commonly used method for acetabular revisions now. There are numerous advantages: surface contact is maximised; weight-bearing is distributed over a large area of the pelvis; the need for bone grafting is reduced; and usually, hip center of rotation is restored. The possible disadvantages, or caveats, of jumbo cups include: may not restore bone stock; may ream away
Pelvic discontinuity remains one of the most difficult reconstructive challenges during acetabular revision. Bony defects are extremely variable and remaining bone quality may be extremely poor. Careful pre-operative imaging with plain radiographs, oblique views, and CT scanning is recommended to improve understanding of the remaining bone stock. It is wise to have several options available intra-operatively including metal augments, jumbo cups, and cages. Various treatment options have been used with variable success. The principles of management include restoration of acetabular stability by “connecting” the ilium to the ischium, and by (hopefully) allowing some bony ingrowth into a porous surface to allow longer-term construct stability.
Purpose: To compare the accuracy of post-operative plain radiographs versus computed tomography (CT) scans for the assessment of acetabular fracture reduction. Method: A retrospective assessment of sixty-four fractures in sixty-two patients was performed independently by three orthopedic trauma surgeons. Pre-operative CT scans and three plain radiographs (one anteroposterior pelvis and two Judet views) were used to classify the fracture pattern and measure pre-operative articular step and gap. Post-operative reduction quality was assessed using three plain radiographs and an axial CT assessing for step, gap, intra-articular hardware or fragments and necessity to re-operate. Results: Fracture patterns were as follows; posterior wall (n=10),
We utilized a dry-bone model of the pelvis and proximal femur, set upon transparent Lucite plates with four mounting screws and adjustable struts, allowing measurable and reproducible pelvic tilt and rotation. Our protocol for osteotome placement at each of the osteotomy sites strictly followed the technique described by Ganz. A 30°, 15 mm bifid osteotome was used for imaging at the initial ischial osteotomy at the infracotyloid groove. A 30°, 2 cm straightedge osteotome was placed 4 cm below the pelvic brim to image the retroacetabular osteotomy on the quadrilateral plate. Various osteotome placements were imaged with the C-arm image intensifier to better define the risks of inferior and posterosuperior intraarticular osteotomies at each of these sites, respectively. A 600 osteotome oriented at 500 to the quadrilateral plate was also utilized. In addition, violation of the inferior quadrant of the joint as well as posterolateral slipping of the osteotome blade along the