Aims. Proper preoperative planning benefits fracture reduction, fixation, and stability in tibial plateau fracture surgery. We developed and clinically implemented a novel workflow for 3D surgical planning including
Partial meniscectomy patients have a greater likelihood for the development of early osteoarthritis (OA). To prevent the onset of early OA,
The objective of this study was to use
Introduction. Kienböck's disease is generally defined as the collapse of the lunate bone, and this may lead to early wrist osteoarthritis. Replacing the collapsed lunate with an implant has regained renewed interest with the advancing technology of additive manufacturing, enabling the design of
Aims. Transfusion after primary total hip arthroplasty (THA) has become rare, and identification of causative factors allows preventive measures. The aim of this study was to determine
Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty for patients who require treatment of single-compartment osteoarthritis, especially for young patients. To satisfy this requirement, new
Distal femoral osteotomy is an established successful procedure which can delay the progression of arthritis and the need for knee arthroplasty. The surgery, however, is complex and lengthy and consequently it is generally the preserve of highly experienced specialists and thus not widely offered. Patient specific instrumentation is known to reduce procedural complexity, time, and surgeons’ anxiety levels1 in proximal tibial osteotomy procedures. This study evaluated a novel patient specific distal femoral osteotomy procedure (Orthoscape, Bath, UK) which aimed to use custom-made implants and instrumentation to provide a precision correction while also simplifying the procedure so that more surgeons would be comfortable offering the procedure. Three patients (n=3) with early-stage knee arthritis presented with valgus malalignment, the source of which was predominantly located within the distal femur, rather than intraarticular. Using conventional techniques and instrumentation, distal femoral knee osteotomy cases typically require 1.5–2 hours surgery time. The use of bi-planar osteotomy cuts have been shown to improve intraoperative stability as well as bone healing times2. This normally also increases surgical complexity; however, multiple cutting slots can be easily incorporated into patient specific instrumentation.Abstract
Background
Presenting problem
Aims. The aim of this study was to evaluate the reliability and validity of a
In 2021, Vigdorchik et al. published a large multicentre study validating their simple Hip-Spine Classification for determining
Introduction. Lumbar spine fusion in patients undergoing THA (total hip arthroplasty) is a known risk factor for hip dislocation with some studies showing a 400% increased incidence compared to the overall THA population. Reduced spine flexibility can effectively narrow the cup anteversion safe zone while alterations in pelvic tilt can alter the center of the anteversion safe zone. The use of precision cup alignment technology combined with
Objectives. Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a
Introduction. The surgical treatment of critical-sized bone defects with complex three-dimensional (3D) geometries is a challenge for the treating surgeon. Additive manufacturing such as 3D printing enables the production of highly individualized bone implants meeting the shape of the patient's bone defect and including a tunable internal structure. In this study, we showcase the design process for
Musculoskeletal modeling techniques simulate reverse total shoulder arthroplasty (RTSA) shoulders and how implant placement affects muscle moment arms. Yet, studies have not taken into account how muscle-length changes affect force-generating capacity postoperatively. We develop a
Significance. In ideal shared decision making (SDM), evidence-based treatment options, their likelihood of success, and the probability of adverse events is discussed with the patient. However, current SDM is fundamentally flawed because evidence for
Background. Accurate placement of the glenoid component in total shoulder arthroplasty (TSA) is critical to optimize implant longevity. Commercially available
Objectives. Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology. Methods. A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability. Results. This study involved the realization of a human cell-laden collagen meniscus using 3D bioprinting. The meniscus prototype showed the biological potential of this technology to provide an anatomically shaped,
INTRODUCTION. To test whether there are differences in postoperative mechanical and component alignment, and in functional results, between conventional, navigated and
3D-printed orthopedic implants have been gaining popularity in recent years due to the control this manufacturing technique gives the designer over the different design aspects of the implant. This technique allows us to manufacture implants with material properties similar to bone, giving the implant designer the opportunity to address one of the main complications experienced after total hip arthroplasty (THA), i.e. aseptic loosening of the implant. To restore proper function after implant loosening, the implant needs to be replaced. During these revision surgeries, some extra bone is removed along with the implant, further increasing the already present defects, and making it harder to achieve proper mechanical stability with the revision implant. A possible way to limit the increasing loss of bone is the use of biodegradable orthopedic implants that optimize long-term implant stability. These implants need to both optimize the implant such that stress shielding is minimized, and tune the implant degradation rate such that newly formed bone is able to replace the degrading metal in order to maintain a proper bone-implant contact. The hope is that such (partly) degradable implants will lead to a reduction in the size of the bone defects over time, making possible future revisions less likely and less complex. We focused on improving the long-term implant stability of
Introduction. Current modeling techniques have been used to model the Reverse Total Shoulder Arthroplasty (RTSA) to account for the geometric changes implemented after RTSA [2,3]. Though these models have provided insight into the effects of geometric changes from RTSA these is still a limitation of understanding muscle function after RTSA on a
Intervertebral discs (IVD) provide flexibility to the back and ensure functional distributions of the spinal loads. They are avascular, and internal diffusion-dependent metabolic transport is vital to supply nutrients to disc cells1, but interactions with personalized IVD shapes and mechanics remain poorly explored. Poromechanical finite element models of seven personalized lumbar IVD geometries, with mean heights ranging from 8 to 16 mm were coupled with a reactive oxygen, glucose and lactate transport model linked with tissue deformations and osmosis . In previous studies, reduced formulations of the divergence of the solute flux (∇ .J = ∇ . (D∇ C) = ∇ D. ∇ C +D∇ 2C) ignored the dependence of the diffusion on the deformation gradients, ∇ D. ∇C. We simulated this phenomenon to explore its significance in mechano-metabolic -transport couplings, in the different geometries, over 24h of simulated rest (8h) and physical activity (16h). ∇ D. ∇ C affected the daily variations of glucose concentrations in IVD thinner than 12 mm but with neglectable variation ranges, while not considering ∇ D. ∇ C in taller discs only slightly overestimated the glucose concentration. Most importantly, tall IVD had nearly 60% less glucose than thin IVD, with local drops below the concentration of 0.5 mM, considered to be critical for disc cells3, in the anterior nucleus pulposus. On the one hand, previous reduced formulations for mechanometabolic-transport models of the IVD seem acceptable, even for