The goals of this study were: 1) to determine if high-fat diet
(HFD) feeding in female mice would negatively impact biomechanical
and histologic consequences on the Achilles tendon and quadriceps
muscle; and 2) to investigate whether exercise and branched-chain
amino acid (BCAA) supplementation would affect these parameters
or attenuate any negative consequences resulting from HFD consumption. We examined the effects of 16 weeks of 60% HFD feeding, voluntary
exercise (free choice wheel running) and BCAA administration in
female C57BL/6 mice. The Achilles tendons and quadriceps muscles
were removed at the end of the experiment and assessed histologically
and biomechanically.Objectives
Methods
The Masquelet technique is a variable method for treating critical-sized bone defects, but there is a need to develop a technique for promoting bone regeneration. In recent studies of bone fracture healing promotion, macrophage-mesenchymal stem cell (MSC) cross-talk has drawn attention. This study aimed to investigate macrophage expression in the induced membrane (IM) of the Masquelet technique using a
Aims. The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a
Abstract. Objectives. Current therapies for osteoporosis are limited to generalised antiresorptive or anabolic interventions, which do not target specific regions to improve skeletal health. Moreover, the adaptive changes of separate and combined pharmacological and biomechanical treatments in the ovariectomised (OVX)
Introduction. Poor osseointegration of cementless implants is the leading clinical cause of implant loosening, subsidence, and replacement failure, which require costly and technically challenging revision surgery. The mechanism of osseointegration requires further elucidation. We have recently developed a novel titanium implant for the
The establishment of a proper musculoskeletal system depends on the well-organized and synchronized development of muscle, tendon and cartilage/bone. In tendon biology, a great progress in identifying tendon-specific genes (Scleraxis, Mohawk, Tenomodulin) had been made in the last decade. However, there are many open questions regarding the exact function of genes in tendon development and homeostasis. The purpose of this study was to perform a systematic review of publications describing tendon-related genes, which were studied in-depth and characterized by using knockout technologies and the respectively generated transgenic
The efficacy of saline irrigation for the treatment of periprosthetic infection (PJI) is limited in the presence of infected implants. This study evaluated the efficacy of vancomycin/tobramycin-doped polyvinyl alcohol (PVA)/ceramic composites (PVA-VAN/TOB-P) after saline irrigation in a
Although the etiology of low back pain is unclear, it is believed that intervertebral disc (IVD) degeneration plays a major role. In the present study, we sought to determine if bovine IVD cells maintain their phenotype in a
Chondrosarcoma responds poorly to adjuvant therapy and therefore, new targeted therapy is required. Animal models have been utilised to test therapeutic candidates, however clinically relevant, orthotopic models are lacking. The aim of this study was to develop such a model. In vitro: two human chondrosarcoma cell lines, JJ012 and FS090, were compared with respect to proliferation, colony formation, invasion, MMP-2 and MMP-9 secretion, osteoclastogenesis, endothelial tube stimulation, and expression of the angiogenic factor VEGF, and the anti-angiogenic factor RECK on western blotting. In vivo: 20,000 cells (JJ012 or FS090) were injected either into the intramedullary canal of the
Summary Statement. Low-intensity pulsed ultrasound (LIPUS) enhanced osteogenic differentiation of osteoprogenitor cells derived from
Segmental bone transport (SBT) using an external fixator is currently a standard treatment for large-diameter bone defects at the donor site with low morbidity. However, long-term application of the device is needed for bone healing. In addition, patients who received SBT treatment sometimes fail to show bone repair and union at the docking site, and require secondary surgery. The objective of this study was to investigate whether a single injection of recombinant human bone morphogenetic protein 2 (rhBMP-2)-loaded artificial collagen-like peptide gel (rhBMP-2/ACG) accelerates consolidation and bone union at the docking site in a
Purpose: Bone fatigue damage can lead to stress fractures and may play a role in fragility fractures. The rat forelimb compression model has been used to examine biological responses and gene expression associated with woven bone repair after fatigue damage. Development a similar mouse model would enable the use of genetically modified mice to study molecular mechanisms associated with bone repair. Method: Following approval from our Central Animal Facility, forelimbs of male retired breeder C57BL/6 mice and Sprague Dawley rats (n=31 each) were loaded in axial compression across the carpus and olecranon. First, both forelimbs (postmortem, n=6 each) were monotonically loaded to determine failure load. Next, both forelimbs of animals (postmortem, n=5 each) were loaded cyclically to sub-fracture load (67% of monotonic load for mice, 55% for rats) until fatigue failure. Following analysis of fatigue displacement histories, right forelimbs (post-mortem, n=10 each) were loaded cyclically to a set displacement short of the expected failure displacement (mice–30%; rats–55%). Non-loaded left forelimbs served as controls. Three-point bending tests were performed on the ulnae; mechanical properties were compared between fatigued and non-loaded limbs. Finally, right forelimbs (n=10 each) were cyclically loaded in anaesthetised (2.5% isofluorane) animals to 30% (mice) and 55% (rats) of failure displacement. Animals recovered for seven days; microCT imaging and three-point bend tests were performed on the ulnae. Results: Ultimate forelimb failure loads were 5.63 ± 0.47 N (mouse) and 57.1 ± 5.8 N (rat). Measured from the 10th cycle, fatigue failure occurred at displacements of 1.68 ± 0.21 mm (mouse) and 2.96 ± 0.22 mm (rat). In three-point bending, fatigue damaged ulnae failed at significantly lower loads versus control (mouse −51.6%; rat −32.1%). After seven days healing, bone cross-sectional area was significantly greater (microCT) and mechanical properties partially recovered (−13.8% versus control). Conclusion: Rat and
INTRODUCTION. Loss of joint function is only exploited in osteoarthritis (OA) once severe impairment is apparent. Animal models allow for lesion induction and serial OA progression measures. We recently described an adjustable non-surgical loading model for generating focal cartilage lesions in only the lateral femur joint compartment, in which regimes can be adjusted so that these either do or do not progress spontaneously. Herein, we use ventral plane videographic treadmill gait analysis to determine whether gait changes can be used to discriminate between stable and spontaneously progressing lesions, induced by these two loading regimes. METHODS. Animals encountered normal conditions, except during loading (9N, 40 cycles, 0.1 Hz, 10 sec/ cycle) which was applied to right knees in two groups (n=8) of 8-week-old male CBA mice: i) loaded once; ii) loaded 3 times/week for 2 weeks. Gait (including: brake, propel, stance, stride, stride length, stride frequency, steps and paw area) was assessed 3 times/week for 2 weeks in each
Edema and infection represent serious complications of blunt extremity trauma. It is important to differentiate between pathophysiological changes within tissues proximal and within distal to the site of trauma. The aim was to investigate the effects of soft tissue trauma on the microcirculation of the
Introduction. Enhanced angiogenesis and osteogenesis may provide new strategies for the treatment of osteonecrosis. Methods. Synergistic effects of vascular endothelial growth factor (VEGF) and bone morphogenetic protein - 6 (BMP-6) on in vitro osteogenic differentiation and in vivo ectopic bone formation mediated by a cloned
Introduction. Bone morphogenetic proteins (BMPs) are members of the TGF-beta superfamily of growth factors and are known to regulate proliferation and expression of the differentiated phenotype of chondrocytes, osteoblasts, and osteoclasts. To investigate the osteoblastic differentiation gene expressions that contribute to BMP-7 dependent ostogenesis, we performed gene expression profiling of BMP-7-treated
Canonical Wnt inhibitor Sclerostin (SOST) may be a key mechanotransduction regulator. Unloading/loading 10 week old Sost−/− and WT mice. Unloading: Quads and calf muscles injected each with 0.5U botulinum toxin (BTX, Allergan) caused tibial unloading. Loading: 1200 cycles of tibial axial loading, 1200μe on mid-shaft, 4Hz, 5 days/week. Treated and control tibiae μCT scanned (Skyscan 1174) at 2 weeks.Introduction
Methods
The morbidity associated with tendinopathy is a costly burden on our health system. Recent investigations in our laboratory have shown that alterations in mechanical stress cause significant changes in tendon expression of key matrix molecules and proteolytic enzymes including the aggrecanase molecules, (e.g. ADAMTS-5). Here, we investigate the biomechanical consequences of such altered tensile stress in tail tendons from mice with and without deletion of the ADAMTS-5 gene. Tail tendons from 12 week old C57BL6 wild type and ADAMTS-5 knock-out mice were immediately snap frozen (ex vivo), or cultured stress deprived for 120 hours in DMEM/10% FCS (eight tendons per group). Material properties including maximum stress, strain and elastic modulus were determined for each tendon in uniaxial tension to failure at a constant strain rate of 1.0 mm/second (10% strain/second) on an Instron 8874 servo-hydraulic testing apparatus. Significant differences between groups were determined with Kruskal-Wallis one-way analysis of variance, followed by Mann-Whitney U test with Benjamini-Hochberg post-hoc corrections for multiple comparisons. Stress deprivation for 120 hours led to a significant increase in maximum stress for both the wild type (~150% increase, p = 0.0008) and ADAMTS-5 deficient (~100%, p = 0.0033) mice when compared to ex vivo tendon. Stress deprivation led to a 100% increase in elastic modulus compared to ex vivo for the wild type tendons (p = 0.0033) but failed to increase this parameter in the ADAMTS-5 deficient mice. When the effect of stress deprivation of the ADAMTS-5 deficient mice was directly compared to the wild type stress deprived tendons, a 35% decrease in elastic modulus was found (p = 0.021). We have shown for the first time that deletion of an aggrecanase molecule significantly decreases the material properties of tendon. Alterations in the expression of the aggrecanase molecules may play a role in the development and progression of tendinopathy through their ability to modulate the metabolism of aggrecan [
Spinal cord injury is characterised by an inflammatory cascade that leads to neuronal death by neurotoxicity. In a model of spinal cord damage we successfully preserved the number of ventral horn neurons by treatment with interleukin-1 receptor antagonist (IL1RA) and neurotrophin (NT)-3. Secondary damage after spinal cord injury (SCI) is characterised by activation of microglial cells that release neurotoxic agents. This results in apoptotic death of neurons that survived the initial trauma. Interleukin (IL)-1 is one of the most prominent mediators of neurotoxicity. Organotypic spinal cord slice cultures (OSCSC) are a useful in vitro model of spinal cord injury. We have previously shown that OSCSC degenerate substantially during in vitro incubation under standard conditions. Our aim was to treat OSCSC with the putatively neuroprotective agents IL-1 receptor antagonist (IL1RA) and neurotrophin (NT)-3 and to evaluate neuronal and microglial populations as well as axonal preservation. We hypothesised that treatment with the above substances would enhance neuronal survival and suppress microglial activation.Summary Statement
Introduction