Both gap balancing and
Background. Surgeons generally perform total knee replacement using either a gap balancing or
Computer assisted total knee arthroplasty helps in accurate and reproducible implant positioning, bony alignment, and soft-tissue balancing which are important for the success of the procedure. In TKR, there are two surgical techniques one is
Background. Stability of total knee arthroplasty (TKA) is dependent on correct and precise rotation of the femoral component. Multiple differing surgical techniques are currently utilized to perform total knee arthroplasty. Accurate implant position have been cited as the most important factors of successful TKA. There are two techniques of achieving soft gap balancing in TKA; a
The goals of total knee arthroplasty are to restore the mechanical axis of the knee and create equal and symmetric tension on the ligaments throughout an arc of motion. What surgical technique best achieves this goal remains controversial. In gap balancing, the extension space is created (distal femur and proximal tibia) and balanced. The flexion space and femoral component rotation are then set by placing tension on the collateral ligaments. This allows the femoral component to be rotated to create an equal and symmetric flexion gap based on the tension of collateral ligaments rather than arbitrary bony landmarks. In the
INTRODUCTION. The results of modified gap balancing and
The goals of total knee arthroplasty are to restore the mechanical axis of the knee and create equal and symmetric tension on the ligaments throughout an arc of motion. What surgical technique best achieves this goal remains controversial. In gap balancing, the extension space is created (distal femur and proximal tibia) and balanced. The flexion space and femoral component rotation are then set by placing tension on the collateral ligaments. This allows the femoral component to be rotated to create an equal and symmetric flexion gap based on the tension of collateral ligaments rather than arbitrary bony landmarks. In the
Background. When positioning and rotating the femoral cutting block (AP) on the femur it can either be done according to bony landmarks (measured resection) or by tensioning the flexion gap and positioning it parallel to the tibia (gap balanced technique.) Accurate rotation of the femoral component is essential to ensure a symmetric flexion gap to ensure optimal tibio-femoral kinematics and patello-femoral tracking. Methods. 74 consecutive total knee replacements were assessed intra-operatively for symmetry of the flexion gap by applying a varus and a valgus stress and digitally recording the opening with a computer assisted navigation system. External rotation of the femoral component according to the bony landmarks was measured radiologically. This was compared to the external rotation suggested by the navigation intra-operatively using a gap balanced workflow. Results. The gap balanced technique gave a symmetric flexion gap with less than 3 mm side to side difference in 95% of cases. In 84% of cases (62 of 74) the gap balanced technique was more accurate than the
Background. In recent years, the use of modern cementless implants in total knee arthroplasty has been increasing in popularity. These implants take advantage of new technologies such as additive manufacturing and potentially provide a promising alternative to cemented implant designs. The purpose of this study was to compare implant migration and tibiofemoral contact kinematics of a cementless primary total knee arthroplasty (TKA) implanted using either a gap balancing (GB) or
Background. In
Introduction. Surgeons performing a total knee replacement (TKR) have two techniques to assist them achieve proper bone resections and ligament tension – gap balancing (GB) and
Introduction. Surgeons performing a total knee replacement (TKR) have two available techniques available to help them achieve the proper bone resections and ligament tension – gap balancing (GB) and
Introduction:. Total knee arthroplasty (TKA) should aim to adjust the component gap (CG) difference between extension and flexion. However, this difference cannot be measured without placement of a femoral component. The bone gap reportedly decreases in extension after component setting. In contrast, it may be possible to use the mean value of the CG difference in several patients to adjust femoral resection amount beforehand. The purpose of this study is to evaluate the technique of adjusting CG difference using the mean values with
Background. Proper femoral component placement plays a key role in the success of a total knee replacement (TKR). Controversy exists on which technique should be used to ensure proper femoral component placement. This two-part study compares gap balancing (GB) and
Introduction. Modified gap technique has been reported to be beneficial for the intraoperative soft tissue balancing in posterior-stabilized (PS) -TKA. We have found intraoperative ligament balance changed depending on joint distraction force, which might be controlled according to surgeons' fells. We have developed a new surgical concept named as “medial preserving gap technique (MPGT)” to preserve medial knee stability and provide quantitative surgical technique according to soft tissue balance measurement using a tensor device. The purpose of this study was to compare 3-years postoperative knee stability after PS-TKA in varus type osteoarthritic (OA) knees between MPGT and
Introduction. Some authors have reported that if PCL is resected, flexion gap(FG) will become wider than extension gap(EG). Sacrifice or sparing of PCL influences the equality of EG and FG. Meanwhile,
Computer navigated Total Knee Arthroplasty is routinely performed with gratifying results. New navigation software is now designed to help surgeons balance soft tissues in Total Knee Arthroplasty (TKA). The aim of our study was to compare functional scores at two years between two different techniques of knee balancing. A prospective randomized control study was conducted between February 2007 and February 2008 involving 52 patients. Two different techniques of knee balancing were used namely,
An institution of the authors (Center for Musculoskeletal Research) and one author (DAD) have received funding from DePuy, Inc. (Warsaw, IN). Each author certifies that his or her institution has approved the reporting of these cases, that all investigations were conducted in conformity with ethical principles of research, and that informed consent for participation in the study was obtained. This work was performed at Center for Musculoskeletal Research, University of Tennessee, Knoxville, TN and the Rocky Mountain Musculoskeletal Research Laboratory, Denver, CO.
Introduction. Soft tissue releases are often required to correct deformity and achieve gap balance in total knee arthroplasty (TKA). However, the process of releasing soft tissues can be subjective and highly variable and is often perceived as an ‘art’ in TKA surgery. Releasing soft tissues also increases the risk of iatrogenic injury and may be detrimental to the mechanically sensitive afferent nerve fibers which participate in the regulation of knee joint stability.