Aims. To fully quantify the effect of posterior tibial slope (PTS) angles on
Objectives. To validate the precision of digitally reconstructed radiograph (DRR) radiostereometric analysis (RSA) and the model-based method (MBM) RSA with respect to benchmark marker-based (MM) RSA for evaluation of kinematics in the native hip joint. Methods. Seven human cadaveric hemipelves were CT scanned and bone models were segmented. Tantalum beads were placed in the pelvis and proximal femoral bone. RSA recordings of the hips were performed during flexion, adduction and internal rotation. Stereoradiographic recordings were all analyzed with DRR, MBM and MM. Migration results for the MBM and DRR with respect to MM were compared. Precision was assessed as systematic bias (mean difference) and random variation (Pitman’s test for equal variance). Results. A total of 288 dynamic RSA images were analyzed. Systematic bias for DRR and MBM with respect to MM in translations (p < 0.018 mm) and rotations (p < 0.009°) were approximately 0. Pitman’s test showed lower random variation in all degrees of freedom for DRR compared with MBM (p < 0.001). Conclusion. Systematic error was approximately 0 for both DRR or MBM. However, precision of DRR was statistically significantly better than MBM. Since DRR does not require marker insertion it can be used for investigation of preoperative hip kinematics in comparison with the postoperative results after joint preserving hip surgery. . Cite this article: L. Hansen, S. De Raedt, P. B. Jørgensen, B. Mygind-Klavsen, B. Kaptein, M. Stilling. Marker free model-based radiostereometric analysis for evaluation of hip
Aims: This work describes a new intraoperative computer-assisted method for the evaluation of
Aims. The goal was to evaluate tibiofemoral knee
Hop tests are used to determine return to sports after ACL reconstruction. They mostly measure distance and symmetry but do not assess kinematics and kinetics. Recently, biomechanical evaluations have been incorporated into these functional jump tests for the better assessment of return to sport. We assessed the sagittal plane range of motion (ROM) of the knee, the deviation axis of rotation (DAOR), and the vertical ground reaction force (vGRF) normalized to body weight in nine healthy participants during the single leg (SLH) and crossover hop tests (COHT). Participants' leg lengths were measured. Jumping distances were marked in the test area as being 4/5 of the leg length. Four sensors were placed on the thighs, the legs and the feet. These body parts were handled as a single rigid body. Eight 480 Hz cameras were used to capture the movements of these rigid bodies. vGRF at landing were measured using a force plate (Bertec, Inc, USA). The ROM of the knee joint and the DAOR were obtained from kinematic data. Participants'
No proven long-term joint-preserving treatment options exist for patients with irreparable meniscal damage. This study aimed to assess gait kinematics and contact pressures of novel fibre-matrix reinforced polyvinyl alcohol-polyethylene glycol (PVA-PEG) hydrogel meniscus implanted ovine stifle joints against intact stifles in a gait simulator. The gait simulator controlled femoral flexion-extension and applied a 980N axial contact force to the distal end of the tibia, whose movement was guided by the joint natural ligaments (Bartolo; ORS 2021;p1657- LB). Five right stifle joints from sheep aged >2 years were implanted with a PVA-PEG total medial meniscus replacement, fixed to the tibia via transosseous tunnels and interference screws. Implanted stifle joint contact pressures and kinematics in the simulator were recorded and compared to the intact group. Contact pressures on the medial and lateral condyles were measured at 55° flexion using Fujifilm Prescale Low Pressure film inserted under the menisci. 3D kinematics were measured across two 30 second captures using the Optotrak Certus motion-tracking system (Northern Digital Inc.). Medial peak pressures were not significantly different between the implanted and intact groups (p>0.4), while lateral peak pressures were significantly higher in the implanted group (p<0.01). Implanted stifle
Understanding the long-term effects of total knee arthroplasty (TKA) on
The Pivot-shift test is a clinical test for knee instability for patinets with Anterior cruciate ligament (ACL), however the test has low inter-observer reliability. Dynamic radiostereometry (dRSA) imaging is a highly precise method for objective evaluation of
We aim to determine the differences in lower limb joint kinematics during the golf swing of patients who had undergone Total Knee Arthroplasty (TKA) and a control group of native knee golfers. A case-control study was undertaken with ten golfers who had undergone TKA (cruciate retaining single radius implant) and five age and matched golfers with native knees. Each golfer performed five swings with a driver whilst being recorded at 200Hz by a ten-camera motion capture system. Knee and hip three-dimensional joint angles (JA) and joint angular velocities (JAV) were calculated and statistically compared between the groups at six swing events. The only significant differences in knee
In this study, we aimed to investigate tibiofemoral and allograft loading parameters after OCA transplantation using tibial plateau shell grafts to characterize the clinically relevant biomechanics that may influence
Introduction. This study aimed to evaluate the effectiveness of a novel intraoperative navigation platform for total knee arthroplasty (TKA) in restoring native knee
While hip arthroscopy utilization continues to increase, capsular management remains a controversial topic. Therefore the purpose of this research was to investigate the biomechanical effect of capsulotomy and capsular repair techniques on hip
Hip arthroscopy rates continue to increase. As a result, there is growing interest in capsular management techniques. Without careful preservation and surgical techniques, failure of the repair result in capsular deficiency, contributing to iatrogenic instability and persistent post-operative pain. In this setting, capsular reconstruction may be indicated, however there is a paucity of objective evidence comparing surgical techniques to identify the optimal method. Therefore, the objective of this study was to evaluate the biomechanical effect of capsulectomy and two different capsular reconstruction techniques (iliotibial band [ITB] autograft and Achilles tendon allograft) on hip
Orthopaedic training sessions, vital for surgeons to understand post-operative joint function, are primarily based on passive and subjective joint assessment. However, cadaveric knee simulators, commonly used in orthopaedic research,. 1. could potentially benefit surgical training by providing quantitative joint assessment for active functional motions. The integration of cadaveric simulators in orthopaedic training was explored with recipients of the European Knee Society Arthroplasty Travelling Fellowship visiting our institution in 2018 and 2019. The aim of the study was to introduce the fellows to the knee joint simulator to quantify the surgeon-specific impact of total knee arthroplasty (TKA) on the dynamic joint behaviour, thereby identifying potential correlations between surgical competence and post-operative biomechanical parameters. Eight fellows were assigned a fresh-frozen lower limb each to plan and perform posterior-stabilised TKA using MRI-based patient-specific instrumentation. Surgical competence was adjudged using the Objective Structured Assessment of Technical Skills (OSATS) adapted for TKA. 2. All fellows participated in the in vitro specimen testing on a validated knee simulator,. 3. which included motor tasks – passive flexion (0°-120°) and active squatting (35°-100°) – and varus-valgus laxity tests, in both the native and post-operative conditions. Tibiofemoral kinematics were recorded with an optical motion capture system and compared between native and post-operative conditions using a linear mixed model (p<0.05). The Pearson correlation test was used to assess the relationship between the OSATS scores for each surgeon and post-operative
Aims. The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery. Methods. An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups. Results. The pre- to postoperative changes in joint anatomy were significantly less in patients undergoing bi-UKA in all three planes in both the femur and tibia, except for femoral sagittal component orientation in which there was no difference. Overall, for the six parameters of alignment (three femoral and three tibial), 47% of bi-UKAs and 24% TKAs had a change of < 2° (p = 0.045). The change in HKAA towards neutral in varus and valgus knees was significantly less in patients undergoing bi-UKA compared with those undergoing TKA (p < 0.001). Alignment was neutral in those undergoing TKA (mean 179.5° (SD 3.2°)) while those undergoing bi-UKA had mild residual varus or valgus alignment (mean 177.8° (SD 3.4°)) (p < 0.001). Conclusion. Robotic-assisted, cruciate-sparing bi-UKA maintains the natural anatomy of the knee in the coronal, sagittal, and axial planes better, and may therefore preserve normal
INTRODUCTION. Accurate knowledge of knee
Introduction. Despite decades of clinical research in artificial joints and underlying failure mechanisms, systematical and reproducible identification of reasons for complications in total knee replacements (TKR) remains difficult. Due to the complex dynamic interaction of implant system and biological situs, malfunction eventually leading to failure is multifactorial and remains not fully understood. The aim of present study was to evaluate different TKR designs and positions with regard to
Introduction.
Objectives. Static radiostereometric analysis (RSA) using implanted markers is considered the most accurate system for the evaluation of prosthesis migration. By using CT bone models instead of markers, combined with a dynamic RSA system, a non-invasive measurement of joint movement is enabled. This method is more accurate than current 3D skin marker-based tracking systems. The purpose of this study was to evaluate the accuracy of the CT model method for measuring knee
Abstract. Background. Proximal fibular osteotomy (PFO) was defined to provide a treatment option for knee pain caused by gonarthrosis(1). Minor surgical procedure, low complication rate and dramatic pain relief were the main reasons for popularization of this procedure(2, 3). However, changes at the knee and ankle joint after PFO were not clarified objectively in the literature. Questions/purposes. We asked: 1) Does PFO change the maximum and average pressures at the medial and lateral chondral surface of the tibia plateau? 2) Are chondral surface stresses redistributed at the knee and ankle joint after PFO? 3)Does PFO change the distribution of total load on the knee joint? 4) Can PFO lead to change in alignment of lower limb?. Methods. This study was conducted at Maltepe University Faculty of Medicine Hospital, Orthopedics and Traumatology Department and Yildiz Technical University Mechanical Engineering Department in Istanbul, Turkey, between September 2019 and February 2020. Finite element analysis (FEA) was used to evaluate effects of PFO(4). One 62 years old, female volunteer's X-ray, computer tomography and magnetic resonance imaging images were used for creating right lower limb model. Two different lower limb models were created. One of them was osteotomized model (OM) which was created according to definition of PFO and the other was non-osteotomized model (NOM). To obtain a stress distribution comparison between the two models, 350 N of axial force was applied to the femoral heads of the models. Results. After PFO, the maximum contact pressures at the medial and lateral tibial cartilages decreased 83.2% and 66.9%, respectively at the knee joint. The average contact pressure decreased 26.1% at the medial tibial cartilage and increased 42.4% at the lateral tibial cartilage. The Von Mises stresses decreased 57.1% at the femoral cartilage and decreased 79.1% at tibial cartilage. The stress on the tibial cartilage increased 44.6%, and stress on the talar cartilage increased 7.1% at the ankle joint. Under a 350 N axial force, distribution of the total load at the knee joint was changed and become more homogenous in OM compared to NOM. Change in lower extremity alignment after PFO could not be evaluated with FEA. Conclusion. FEA revealed that PFO causes some changes in knee and ankle