Abstract
Aims: This work describes a new intraoperative computer-assisted method for the evaluation of joint kinematics in both total (TKA) and uni-compartmental (UKA) knee arthroplasty. We report schematically the protocol and the preliminary in-vivo results we obtained on 11 patients (9 UKA – 2 TKA).
Methods: The system consists of an optoelectronic localizer, 2 reference arrays and a dedicated acquisition software, that permits the real-time control of limb position and allows the acquisition of joint motions. After a first phase of registration (anatomical landmarks identification) the surgeon executes, both before and after the reconstruction, a series of passive tests: range of motion (PROM) evaluation, varus-valgus (VV) stress at 0°, and VV at 30°. Furthermore the surgeon can acquire also anatomical surfaces (tibial plateaus, femoral condyles, prosthetic components, etc.). The 3D kinematic evaluations and anatomical data are recorded before and after the joint reconstruction. This new methodology has been used during 11 interventions fulfilled at our institute. We compare the PROM results with literature, and we also analyzed the interoperator repeatability in the execution of the tests (3 repetitions performed by a senior surgeon).
Results: The kinematic analysis of the PROM showed that there were no significant differences between per-operative and post-operative in all UKA cases. In the 2 TKR cases internal-external (IE) rotations appeared reduced after the implant, but further data are necessary to have a statistical evidence. The extension was improved both in UKA and TKA. The VV laxity at 0 ° was significantly reduced (p < 0.001), while at 30 ° stayed constant (p = 0.010). In all the TKR cases the evaluation of contact areas between femoral and tibial components showed normal pattern, and in UKA the contacts remain inside the prosthesis areas. Measured kinematic parameters (knee rotations, screw-home mechanism and alignment) were comparable with literature and manual estimation at surgical time.
Conclusions: The proposed protocol optimizes surgical times and minimizes invasiveness. The preliminary results showed that the system is able to quantify new kinematic parameters during intraoperative evaluations, provides data about alignments, gaps, stability and 3D motions of the individual knee and therefore can allow an accurate and real-time estimation of the passive knee function. Moreover the new 3D anatomical and kinematic data can improve the biomechanical understanding of the pathological and prosthetic knees.
The abstracts were prepared by incoming Professor Elena Brach del Prever. Correspondence should be addressed to IORS – President office, Dipartimento di Traumatologia, Ortopedia e Mediciana del Lavoro, Centro Traumatologico Ortopedico - Via Zuretti, 29 I-10135 Torino, Italy.