Advertisement for orthosearch.org.uk
Results 1 - 20 of 1028
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 27 - 27
1 Mar 2021
van Duren B Lamb J Al-Ashqar M Pandit H Brew C
Full Access

The angle of acetabular inclination is an important measurement in total hip replacement (THR) procedures. Determining the acetabular component orientation intra-operatively remains a challenge. An increasing number of innovators have described techniques and devices to achieve it. This paper describes a mechanical inclinometer design to measure intra-operative acetabular cup inclination. Then, the mechanical device is tested to determine its accuracy. The aim was to design an inclinometer to measure inclination without existing instrumentation modification. The device was designed to meet the following criteria: 1. measure inclination with acceptable accuracy (+/− 5o); 2. easy to use intra-operatively (handling & visualization); 3. adaptable and useable with majority of instrumentation kits without modification; 4. sterilizable by all methods; 5. robust/reusable. The prototype device was drafted by computer aided design (CAD) software. Then a prototype was constructed using a 3D printer to establish the final format. The final device was CNC machined from SAE 304 stainless steel. The design uses an eccentrically weighted flywheel mounted on two W16002-2RS ball bearings pressed into symmetrical housing components. The weighted wheel is engraved with calibrated markings relative to its mass centre. Device functioning is dependent on gravity maintaining the weighted wheel in a fixed orientation while the housing can adapt to the calibration allowing for determining the corresponding measurement. The prototype device accuracy was compared to a digital device. A digital protractor was used to create an angle. The mechanical inclinometer (user blinded to digital reading) was used to determine the angle and compared to the digital reading. The accuracy of the device compared to the standard freehand technique was assessed using a saw bone pelvis fixed in a lateral decubitus position. 18 surgeons (6 expert, 6 intermediate, 6 novice) were asked to place an uncemented acetabular cup in a saw bone pelvis to a target of 40 degrees. First freehand then using the inclinometer. The inclination was determined using a custom-built inertial measurement unit with the user blinded to the result. Comparison between the mechanical and digital devices showed that the mechanical device had an average error of −0.2, a standard deviation of 1.5, and range −3.3 to 2.6. The average root mean square error was 1.1 with a standard deviation of 0.9. Comparison of the inclinometer to the freehand technique showed that with the freehand component placement 50% of the surgeons were outside the acceptable range of 35–45 degrees. The use of the inclinometer resulted all participants to achieve placement within the acceptable range. It was noted that expert surgeons were more accurate at achieving the target inclination when compared to less experienced surgeons. This work demonstrates that the design and initial testing of a mechanical inclinometer is suitable for use in determining the acetabular cup inclination in THR. Experimental testing showed that the device is accurate to within acceptable limits and reliably improved the accuracy of uncemented cup implantation in all surgeons


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 87 - 87
17 Apr 2023
Aljuaid M Alzahrani S Bazaid Z Zamil H
Full Access

Acetabular morphology and orientation differs from ethnic group to another. Thus, investigating the normal range of the parameters that are used to assess both was a matter of essence. Nevertheless, the main aim of this study was clarification the relationship between acetabular inclination (AI) and acetabular and femoral head arcs’ radii (AAR and FHAR). A cross-sectional retrospective study that had been done in a tertiary center where Computed tomography abdomen scouts’ radiographs of non-orthopedics patients were included. They had no history of pelvic or hips’ related symptoms or fractures in femur or pelvis. A total of 84 patients was included with 52% of them were females. The mean of age was 30.38± 5.48. Also, Means of AI were 38.02±3.89 and 40.15±4.40 (P 0.02, significant gender difference) for males and females, respectively. Nonetheless, Head neck shaft angle (HNSA) means were 129.90±5.55 and 130.72±6.62 for males and females, respectively. However, AAR and FHAR means for males and females were 21.3±3.1mm, 19.9±3.1mm, P 0.04 and 19.7±3.1mm, 18.1±2.7mm, P 0.019, respectively. In addition, negative significant correlations were detected between AI against AAR, FHAR, HNSA and body mass index (BMI) (r 0.529, P ≤0.0001, r 0.445, P ≤0.0001, r 0.238, P 0.029, r 0.329, P ≤0.007, respectively). On the other hand, high BMI was associated with AAR and FHAR (r 0.577, P 0.0001 and r 0.266, p 0.031, respectively). This study shows that high AI is correlated with lower AAR, FHAR. Each ethnic group has its own normal values that must be studied to tailor the path for future implications in clinical setting


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 97 - 97
1 Apr 2017
Bohler I Malek N Vane A
Full Access

Background. Positioning of the acetabular component in total hip arthroplasty has profound effects on the biomechanics, stability and wear of the prosthesis. Normal anatomical position in females is 57 degrees (50 – 67 degrees) inclination with 19 degrees (9 – 32 degrees) of anteversion, whilst in males 56 degrees of inclination (48 – 66 degrees) with 19 degrees (9 – 32 degrees) is normal. In total hip arthroplasty, inclination recommendation ranges from 30 – 50 degrees. The aim of this study was to radiographically measure acetabular component position in total hip arthroplasty and compare to normal values. Method. The Widmer method was used by two independent observers to radiographically measure inclination in 522 patients using standard AP radiographs. Primary measures and variables were statistically analysed as was inter and intra observer reliability. All patients included within the study received total hip arthroplasty for age related degenerative changes to the hip. Operations were undertaken by 17 separate consultants or senior registrars under their care. Results. Overall mean inclination was measured at 45.27 degrees with a range of 26 – 68 degrees. Statistically significant differences were observed between cemented 45.9o and non-cemented hips 43.9 degrees (p= 0.018), Simple 45.5 degrees vs complex 42.1 degrees (p=0.003) and Male 44.3 degrees vs Female 46.2 degrees (p=0.0198). No statistical difference was seen between consultant and registrar (p=0.211) and right vs left (p=0.768). Inter observer reliability was seen to be 0.91 whilst intra observer reliability 0.96. Conclusion. Although a large range of outcomes were observed, 95% of radiographs reviewed fell within a range of 33.6 – 56.9 degrees Variables such as surgical positioning, patient anatomy/body habitus, surgical technique, instrumentation likely influenced abnormal results. Abnormal positioning may have effects such as eccentric wear and dislocation, however, and such findings are yet to be observed in the study group


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 9 - 9
1 Dec 2020
Meermans G Kats J Doorn JV Innman M Grammatopoulos G
Full Access

Introduction. In total hip arthroplasty, a high radiographic inclination angle (RI) of the acetabular component has been linked to short- and long-term complications. There are several factors that lead to RI outliers including cup version, pelvic orientation and angle of the cup introducer relative to the floor. The primary aim of this study was to analyse what increases the risk of having a cup with an RI outside the target zone when controlling cup orientation with a digital inclinometer. Methods. In this prospective study, we included 200 consecutive patients undergoing uncemented primary THA in the lateral decubitus position using a posterior approach. Preoperatively, the surgeon determined the target intraoperative inclination (IOI. target. ). The intra-operative inclination of the cup (IOI. cup. ) was measured with the aid of a digital inclinometer after seating of the acetabular component. Anteroposterior pelvic radiographs were made to measure the RI of the acetabular component. The target zones were defined as 30°-45° and 35°-45° of RI. The operative inclination relative to the sagittal plane of the pelvis (OI. math. ) was calculated based on the radiographic inclination and anteversion angle. The difference between two outcome measures was expressed as Δ. Results. The mean RI was 37.9° SD 4.7, there were 12 cases with RI outside the 30°– 45° zone (6%) and 53 outliers (26.5%) with RI outside the 35°-45° zone. The mean absolute ΔIOI. cup. -IOI. target. was 1.2° SD 1.0. The absolute ΔIOI. cup. -IOI. target. was less than 1° in 108 patients (54%), less than 2° in 160 patients (80%), less than 3° in 186 patients (93%), and in 14 patients (7%) the difference was 3°-5°. The mean pelvic motion (ΔOI. math. -IOI. cup. ) was 8.8° SD 3.9 (95% CI 8.2° to 9.3°). The absolute deviation from the mean ΔOI. math. -IOI. cup. , which corresponds with the amount of pelvic motion, was significantly higher in RI outliers compared with non-outliers for both the 30°-45° and 35°-45° inclination zone (7.4° SD 3.3 vs 2.8° SD 2.1 and 4.7° SD 2.8 vs 2.5° SD 2.0 respectively) (p<0.0001). A linear regression analysis demonstrated a strong correlation between ΔOI. math. -IOI. cup. and the RI of the cup (r. 2. =0.70; P<0.0001). A multiple regression was run to predict ΔOI. math. -IOI. cup. from gender, BMI, side and hip circumference. These variables statistically significantly predicted ΔOI. math. -OIa. cup. , F(4, 195) = 19,435, p<0.0001, R2 = 0.285, but only side (p=0.04) and hip circumference (p<0.0001) added statistically significantly to the prediction. Discussion and Conclusion. When using a digital inclinometer 94% of cups had a RI within a 30°-45° zone and 73.5% of cups within a 35°-45° zone using a predefined IOI. target. based on the patient's hip circumference. The difference between the IOI. target. and the IOI. cup. of the acetabular component was less than 3° in 93% and less than 5° in all patients signifying that the surgeons were able to implant the cup close to their chosen intra-operative orientation. Deviation from the mean ΔOI. math. -IOI. cup. was significantly bigger in the RI outliers indicating that RI outliers were caused by more or less than deviation of the sagittal plane of the pelvis at time of cup impaction


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 83 - 83
1 Apr 2018
Huish E Daggett M Pettegrew J Lemak L
Full Access

Introduction. Glenoid inclination, defined as the angle formed by the intersection of a line made of the most superior and inferior points of the glenoid and a line formed by the supraspinatus fossa, has been postulated to impact the mechanical advantage of the rotator cuff in shoulder abduction. An increase in glenoid inclination has previously been reported in patients with massive rotator cuff tears and multiple studies have correlated rotator cuff tears to an increase of the critical shoulder angle, an angle comprised of both the glenoid inclination and acromical index. Glenoid inclination is best measured by the B-angle as it has been shown to be both an accurate and reliable. The purpose of this study was to determine the correlation of glenoid inclination and the presence of degenerative rotator cuff tears. Methods. Data was prospectively collected for study patients assigned to one of two groups. The tear group consisted of patients with degenerative, atraumatic rotator cuff tears, confirmed by MRI and the control group consisted of healthy volunteers without shoulder pain. Inclusion criteria for both groups included age 45 or older. Exclusion criteria included history of previous shoulder surgery, previous patient-recalled injury to the shoulder, presence of glenoid weak, and previous humerus or glenoid fracture. Patients were also excluded from the control group if any shoulder pain or history of rotator cuff disease was present. All patients had standard anterior/posterior shoulder radiographs taken and glenoid inclination was digitally measured with Viztek OpalRad PACS software (Konica Minolta, Tokyo, Japan). The beta angle was measured to determine the glenoid inclincation. Statistical analysis was performed using SPSS version 23 (IBM, Aramonk, NY). Patient age and glenoid inclination were examined with the Shapiro-Wilk test of normality and then compared with student t tests. Gender distribution was compared with chi square test. A p-value of 0.05 was used to represent significance. Results. The study included 26 patients in the tear group and 23 patients in the control group. There was no difference in the age of the two groups (57 vs 54, p=0.292) or gender distribution (p=0.774). The average glenoid inclination was 11.18 (SD=2.67) degrees for the tear group and 5.97 (SD=2.55) degrees for the control group. This difference was statistically significant (p<0.001). Discussion. Glenoid inclination is significantly increased in patients with degenerative rotator cuff tears compared to healthy controls. Tendon overload secondary to increased glenoid inclination may be the primary anatomical factor contributing to the development of degenerative rotator cuff tears


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 177 - 177
1 Mar 2013
Fujiwara K Endou H Okada Y Mitani S Ozaki T
Full Access

Objectives. The anteversion angle of the cup is important for achieving the stability and avoiding the dislocation after total hip arthroplasty (THA). We place the component considering with the change of inclination of pelvis with its posture change. We analyzed the perioperative pelvic inclination angles with posture change and the time course. Materials and Methods. We treated 40 hips in 40 patients (9 males and 31 females) with cementless THA that were performed from January 2007 to December 2008 in our hospital. 30 osteoarthritis hips, 3 rheumatoid arthritis hips and 7 idiopathic osteonecrosis hips were included. All patients were performed THA with VectorVision Hip 2.5.1 navigation system (BrainLAB, Feldkirchen, Germany). We used AMS HA cups and PerFix stems (KYOCERA Medical co., Osaka, Japan). The mean age of surgery was 59 years old (35–79 years old). The pelvic inclination angles (PIA) were measured with anteroposterior radiographic image in accordance with the Doiguchi's method. Results. The amount of change of the pelvic inclination angle between supine and standing position was 0.6 degrees prior to surgery, 0.7 degree at 1 year after surgery and 2.3 degrees at 3 years after surgery. 7 patients prior to surgery, 7 patient at 1 year after surgery and 13 patient at 3 year after surgery changed more than 5 degrees between supine and standing position. The pelvic inclination angles of 23 patients prior to surgery, 19 patients at 1 year after surgery and 29 patients at 3 years after surgery changed in the retroverted direction with posture change. It tended to increase after surgery. Discussion and Conclusions. When we place the acetabular component, it is important that the pelvic inclination angle in supine position according to preoperative planning and the change of pelvic inclination angle with posture change. The amount of change of PIA tended to increase at 3 year after surgery compared to 1 year after surgery. Moreover, we experienced some patients the amount of change of pelvic inclination angle between supine and standing position changed more than 10 degrees. If the pelvic inclination angle changes widely, it requires more attention because of a narrow safe margin for placing the acetabular component


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 143 - 143
1 May 2016
Fujiwara K Endou H Tetsunaga T Kagawa Y Fujii Y Ozaki T
Full Access

Materials and Methods. We treated 60 hips in 60 patients (8 males and 52 females) with cementless THA that were performed from January 2007 to December 2009 in our hospital. 48 osteoarthritis hips, 5 rheumatoid arthritis hips and 7 idiopathic osteonecrosis hips were included. All patients were performed THA with VectorVision Hip navigation system (BrainLAB, Feldkirchen, Germany). We used AMS HA cups and PerFix stems (KYOCERA Medical co., Osaka, Japan). The mean age of surgery was 61 years old (35–79 years old). The pelvic inclination angles (PIA) were measured with anteroposterior radiographic image in accordance with the Doiguchi's method. Results. The amount of change of the pelvic inclination angle between supine and standing position was 0.6 degrees prior to surgery, 0.7 degree at 1 year after surgery and 2.4 degrees at 5 years after surgery. 7 patients prior to surgery, 7 patient at 1 year after surgery and 18 patient at 5 year after surgery changed more than 5 degrees between supine and standing position. The pelvic inclination angles of 23 patients prior to surgery, 19 patients at 1 year after surgery and 35 patients at 5 years after surgery changed in the retroverted direction with posture change. It tended to increase after surgery. Discussions and Conclusions. When we place the acetabular component, it is important that the pelvic inclination angle in supine position according to preoperative planning and the change of pelvic inclination angle with posture change. The amount of change of PIA tended to increase at 5 year after surgery compared to 1 year after surgery. Moreover, we experienced some patients the amount of change of pelvic inclination angle between supine and standing position changed more than 10 degrees. If the pelvic inclination angle changes widely, it requires more attention because of a narrow safe margin for placing the acetabular component


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 12 - 12
1 Jun 2016
Meermans G Peeters W Van Doorn W Kats J
Full Access

Introduction. In total hip arthroplasty (THA), a high radiographic inclination angle (RI) of the acetabular component has been linked to an increased dislocation rate, liner fracture, and increased wear. In contrast to version, we have more proven boundaries when it comes to a safe zone for angles of RI. Although intuitively it seems easier to achieve a target RI, most studies demonstrate a lack of accuracy and the trend towards a high RI with all surgical approaches when using a freehand technique or a mechanical guide. This is due to pelvic motion during surgery, which can be highly variable. The current study had two primary aims, each with a different primary outcome. The first aim was to determine how accurate a surgeon could obtain the target operative inclination (OI) during THA when using a cementless cup using a digital protractor. The second aim was to determine how accurate a surgeon can estimate the target OI to obtain a RI of 40° based on the patient's hip circumference as demonstrated in a previous study. Methods. In this prospective study, we included 200 consecutive patients undergoing uncemented primary THA in the lateral decubitus position using a posterior approach. Preoperatively, the surgeon determined the target OI based on the patient's hip circumference (22.5°, 25°, 27.5° or 30°). Intraoperatively, the effective OI was measured with the aid of a digital inclinometer after seating of the acetabular component. Six weeks postoperatively anteroposterior pelvic radiographs were made and two evaluators, blinded to the effective OI, measured the RI of the acetabular component. The safe zone for inclination was defined as 30°-45° of inclination. Results. The mean difference between the target OI and the effective OI of the acetabular component was −0.7° SD 1.4 (95% CI −0.9° to −0.5°). The difference between the target and effective OI was less than 1° in 108 patients (54%), less than 2° in 160 patients (80%) and less than 3° in 186 patients (93%). In 14 patients (7%) the difference was 3°-5°. The mean RI was 37.9° SD 4.7 (95% CI 37.2° to 38.5°). The mean difference between the RI and effective OI was 11.5° SD 4.7 (95% CI 10.8° to 12.1°). Overall, 188 cups (94%) were within the inclination safe zone. When analysing the RI outliers, 1 could have be avoided if a better target OI was chosen and 2 could have been avoided if the difference between the target and effective OI would have been smaller. For the remaining 9 outliers (75%) the difference between the RI and effective OI was in the upper and lower 7. th. percentile, indicating more or less than average motion of the pelvis in these patients. Discussion and Conclusions. When using a digital protractor, the mean difference between the target OI and the effective OI of the acetabular component was less than 3° in 93% and less than 5° in all patients. The use of a digital protractor allows surgeons to accurately implant the acetabular component in the desired OI in a cheap and easy way. By adjusting the target OI based on the patient's hip circumference, 94% of the acetabular components were placed within an inclination safe zone of 30°-45°. Most outliers were caused by more of less than average intraoperative pelvic motion


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 83 - 83
1 May 2016
Karelse A Van Tongel A Verstraeten T Poncet D De Wilde L
Full Access

BACKGROUND. Abnormal glenoid version positioning has been recognized as a cause of glenoid component failure caused by the rocking horse phenomenon. In contrast, the importance of the glenoid inclination has not been investigated. MATERIALS AND METHODS. The computed tomography scans of 152 healthy shoulders were evaluated. A virtual glenoid component was positioned in 2 different planes: the maximum circular plane (MCP) and the inferior circle plane (ICP). The MCP was defined by the best fitting circle of the most superior point of the glenoid and 2 points at the lower glenoid rim. The ICP was defined by the best fitting circle on the rim of the inferior quadrants. The inclination of both planes was measured as the intersection with the scapular plane. We defined the force vector of the rotator force couple and calculated the magnitude of the shear force vector on a virtual glenoid component in both planes during glenohumeral abduction. RESULTS. The inclination of the component positioned in the MCP averaged 95° (range, 84°–108°) and for the ICP averaged 111° (range, 94°–126°). A significant reduction in shear forces was calculated for the glenoid component in the ICP vs the MCP: 98% reduction in 60° of abduction to 49% reduction in 90° of abduction. CONCLUSION. Shear forces are significantly higher when the glenoid component is positioned in the MCP compared with the ICP, and this is more pronounced in early abduction. Positioning the glenoid component in the inferior circle might reduce the risk of a rocking horse phenomenon. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 39 - 39
1 Jul 2020
Le V Escudero M Wing K Younger ASE Penner M Veljkovic A
Full Access

Restoration of ankle alignment is thought to be critical in total ankle arthroplasty (TAA) outcomes, but previous research is primarily focused on coronal alignment. The purpose of this study was to investigate the sagittal alignment of the talar component. The talar component inclination, measured by the previously-described gamma angle, was hypothesized to be predictive of TAA outcomes. A retrospective review of the Canadian Orthopaedic Foot and Ankle Society (COFAS) database of ankle arthritis was performed on all TAA cases at a single center over a 11-year period utilizing one of two modern implant designs. Cases without postoperative x-rays taken between 6 and 12 weeks were excluded. The gamma angle was measured by two independent orthopaedic surgeons twice each and standard descriptive statistics was done in addition to a survival analysis. The postoperative gamma angles were analyzed against several definitions of TAA failure and patient-reported outcome measures from the COFAS database by an expert biostatistician. 109 TAA cases satisfied inclusion and exclusion criteria. An elevated postoperative gamma angle higher than 22 degrees was associated with talar component subsidence, defined as a change in gamma angle of 5 degrees or more between postoperative and last available followup radiographs. This finding was true when adjusting for age, gender, body mass index (BMI), and inflammatory arthritis status. All measured angles were found to have good inter- and intraobserver reliability. Surgeons should take care to not excessively dorsiflex the talar cuts during TAA surgery. The gamma angle is a simple and reliable radiographic measurement to predict long-term outcomes of TAA and can help surgeons counsel their patients postoperatively


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 33 - 33
1 Nov 2015
Meermans G Goetheer-Smits I Lim R Van Doorn J Kats J
Full Access

Introduction. A high inclination angle has been linked to an increased dislocation rate, liner fracture, and increased wear. The aim of this study was to compare the operative (OI) with the radiological inclination (RI) angle and determine the influence of patient morphology on pelvic tilt and cup inclination angle. Methods. In the first cohort of 100 patients undergoing uncemented primary total hip arthroplasty, the cup was inserted freehand. In the second cohort of 100 patients, the OI was measured with the aid of a digital inclinometer. RI and pelvic tilt in lateral decubitus were measured. Results. The mean RI in the freehand group was similar to the protractor group (38.5 SD 7.0 and 38.3 SD 4.7; p=0.83) with a significantly greater variance in the freehand group (range 22°-60° versus 27°-51°; p=0.0001) and more outliers for the inclination safe zone (24 versus 10; p=0.01). The mean difference between the RI and OI (ΔRI-OI) in the protractor group was 12.3° SD 4.2 (range 3.8°-19.8°). The mean pelvic tilt was 4.0° (SD 3.5) of adduction. Linear regression analysis demonstrated that RI was positively correlated with OI (r. 2. =0.44, p<0.0001). Hip circumference was negatively correlated with pelvic tilt (r. 2. =0.20, p=0.002) and ΔRI-OI (r. 2. =0.37, p=0.0001). There was a significant reduction in the number of inclination outliers over time in the second cohort (6 versus 2 versus 1 versus 1; p=0.04). Discussion. The mean ΔRI-OI was 12.3°. In patients with a larger hip circumference there was less pelvic tilt in the frontal plane and less ΔRI-OI. Surgeons using the posterior approach in lateral decubitus should aim for a lower OI in order to achieve an acceptable RI, especially in patients with a smaller hip circumference. Conclusion. In our hands, taking into account patient morphology and using a digital protractor intraoperatively has significantly reduced the number of inclination outliers


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 91 - 91
1 Feb 2017
Levy J Kurowicki J Triplet J Niedzielak T Disla S
Full Access

Background. Virtual planning of shoulder arthroplasty has gained recent popularity. Combined with patients specific instrumentation, several systems have been developed that allow the surgeon to accurately appreciate and correct glenoid deformities in version and inclination. While each virtual software platform utilizes a consistent algorithm for calculating these measurements, it is imperative for the surgeon to recognize any differences that may exist amongst software platforms and characterize any variability. Methods. A case-control study of all CT scans of patients previously pre-operatively planned using MatchPoint SurgiCase® software were uploaded into the BluePrint software. The cohort represents surgical planning for total shoulder arthroplasty and reverse shoulder arthroplasty with varying degrees of glenoid deformity. Glenoid version and inclination will be recorded for each CT scan using both software platforms. Results. A total of 38 patient CT scans previously planned using MatchPoint Surgicase® software were uploaded into the BluePrint software. The mean difference for glenoid version between the two software programs was 2.497° (±1.724°) with no significant differences in measured glenoid version readings between BluePrint and SurgiCase software (p=0.8127). No significant differences were seen in the measured glenoid inclination between the two software programs (p=0.733), with a mean difference for glenoid inclination between the two software programs at 5.150° ± 3.733° (figure 1). A Bland-Altman plot determined the 95% limits of agreement between the two programs at −5.879 to 6.116 degrees of glenoid version and −12.05 to 12.75 degrees of glenoid inclination. There was a significant statistical agreement between the two software programs measuring glenoid version and inclination in relation to glenoid wear position for the centered (p=0.004), posterior (p<0.001, p=0.003), posterior-superior (p<0.001, p<0.001), and superior (p=0.027, p=0.034) positions, respectively. Conclusions. Both BluePrint and SurgiCase software platforms yield similar measurements for glenoid version and glenoid inclination. In the setting of glenoid wear in the posterior, posterior-superior or superior position, measurements of between two surgical platforms are in agreement


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_13 | Pages 35 - 35
1 Sep 2014
van der Merwe W van der Merwe J Hiddema W
Full Access

Background. Cup inclination is a major factor in the success of a total hip replacement. An open cup position can lead to dislocation or increased wear from rim loading and a closed cup position lead to impingement against the femoral neck or psoas. Although the ideal inclination for cup position is recommended as between 40 and 45 degrees, accurate positioning of the implant might be influenced by pelvic flexion and movement of the patient's pelvis during the procedure. We wanted to examine if the transvers acetabular ligament (TAL) could be used to determine cup inclination intra-operatively. Methods. 16 hips from 9 cadaveric specimens were used for the study. A computer navigation system (Brain lab) was used to measure and document the exact inclination and version of the acetabular trial component in three positions: flush with the transvers acetabular ligament (TAL), with the rim of the cup 5 mm from the TAL in a cranial direction and with the rim of the cup 5 mm caudally displaced. Statistical analysis of the results was performed by the Department of Biostatistics. Findings. With the cup positioned flush with the TAL, the average version was 43 degrees (range 37 to 47 degrees.) When there was a 5 mm gap between the TAL and the cup the average inclination was 28 degrees (21 to 35 degrees.) When the cup was opened so it covered the TAL by 5 mm the average inclination increased to 64 degrees (55 to 75 degrees.) The average anteversion angle was 18 degrees (range 15 to 25 degrees.). Conclusion. We found the transverse acetabular ligament to be an accurate landmark for positioning of the femoral implant as far as version and inclination was concerned. We recommend positioning the acetabular component flush with the TAL as cup inclination was shown to be ideal in all cases when we adhered to that principle. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 212 - 212
1 May 2006
Lluch A
Full Access

Introduction and aim: In the rheumatoid hand, a radial inclination of the wrist is commonly observed in the presence of an ulnar drift of the fingers. The question that remains is: Which came first? To find an answer to this question, we have studied the radiographs of 122 hand affected by rheumatoid arthritis. Material and methods: In group I (44 hands), the disease was restricted to the wrist joint, which presented an average ulnar inclination of 15°, ranging from neutral to 43° of ulnar inclination. In group II (13 hands), the disease was limited to the MP joints, with an average of 30° of ulnar inclination of the fingers, ranging from 10° to 70°. A compensatory radial inclination of 12° was observed at the wrist, ranging from 2° to 26°. In group III (28 hands), both the wrist and MP joints were affected by the disease. The fingers presented an average ulnar inclination of 17°, ranging from 7° to 40°. The wrist presented an average radial inclination of 4°. In group IV (34 hands) and V (3 hands), measurements were done before and after the finger deformity was corrected from an average of 45° to 7°, while the wrist corrected itself, without wrist balancing procedures, on an average from 30° to 2° of radial inclination. Results: When only the wrist is involved, the metacarpals are always inclined towards the ulnar side. We have observed a radial inclination of the wrist only in the hands presenting an ulnar inclination of the fingers. When the ulnar drift of the fingers is surgically corrected, the radial inclination of the wrist will tend to correct itself. Conclusion: It has been generally accepted that radial inclination of the metacarpals is one of the causes of the ulnar drift of the fingers, but from our studies the radial inclination of the metacarpals should not be considered the cause but rather a consequence of the ulnar drift of the fingers


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 41 - 41
1 Jun 2017
Meermans G Van Doorn J Kats J
Full Access

The orientation of the acetabular component is influenced by the orientation at which the surgeon implants the component and the orientation of the pelvis at the time of implantation. When operating with the patient in the lateral decubitus position, pelvic orientation can be highly variable. The goal of this study was to examine the effect of two different pelvic supports on cup orientation. In this prospective study, 200 consecutive patients undergoing uncemented primary THA in the lateral decubitus position were included. In the control group a single support over the pubic symphysis (PS) was used. In the study group, a single support over the ipsilateral anterior superior iliac spine (ASIS) was used. In every patient, the cup was inserted and the angle of the cup introducer relative to the floor (apparent operative inclination; OIa) was measured with the aid of a digital inclinometer. The radiographic inclination (RI) was measured on anteroposterior pelvic radiographs at 6 weeks postoperatively. The target zone for cup inclination was 35–45°. In both cohorts the cups were implanted close to the target OIa with an absolute difference with the OIa of 0.86° SD 0.82 in the PS cohort and 1.03° SD 0.99 in the ASIS cohort (p=0.18). The difference between the RI and OIa was higher in the PS cohort 12.2° SD 4.1 compared with 7.5° SD 3.7 in the ASIS cohort (p<0.0001) with also a bigger variance (p=0.04) in the PS cohort. The mean RI was 38.5° SD 4.4 compared with 39.2° SD 4.1 (p=0.26) respectively. There were more cups outside the RI target zone in the PS cohort compared with the ASIS cohort (respectively 26 versus 15; p<0.05). In this study the mean difference between the RI and OIa (the angle of the cup introducer during surgery) was significantly less when using a support over the ASIS compared with a support over the pubic symphysis. Apparently using a support over the ASIS causes less pelvic motion during surgery compared with a support over the pubic symphysis. This resulted in less variance and inclination outliers when using a tight target zone of 35–45°


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 29 - 29
1 Mar 2017
Mori S Inoue S Asada S Tsukamoto I Akagi M
Full Access

Background. Several studies have reported that tibial component in varus alignment can worsen the survivorship of medial unicompartmental knee arthroplasty (UKA). On the other hand, Varus/valgus inclination of the tibial component can affect the location of the contact point between femoral and tibial component especially in round on flat bearing surface design. Along with the tibial component inclination, changes in the contact point may also alter the tibial condylar bone stress, which would affect the longevity or complications after UKA. Method. We constructed a validated three-dimensional finite element model of the tibia with a medial component and assessed stress concentrations by changing the tibial component coronal inclinations (squale inclination, 3° and 6° varus, 3° and 6° valgus inclination). We evaluated the Von Mises stress on the medial tibial metaphyseal cortex and the proximal resected surface when a load of 900N was applied on the tibial component surface by two conditions in each inclination models; one is that the loading site is fixed at the mediolateral center of the tibial component (fixed model), and the other is that the loading site is variable depending on the tibial component inclination (variable model) (Fig.1). Result. In variable models, the loading site moved medially 22.8% of the tibial component width as the tibial component inclination changed from 6°varus to 6°valgus. The Von Mises stress concentrations were observed on the medial tibial metaphyseal cortices and on the anterior and posterior corner of the resected surface in all models (Fig.2). Stress concentration was also observed along the medial cortical rim of the resected surface in valgus tibial component inclination of the fixed model and varus inclination of the variable model (Fig.2). The stress on the medial tibial metaphyseal cortices did not markedly change in any inclination of fixed models, but increased in variable models as the tibial component inclination changed from varus to valgus (Fig.3A). The stress on the medial cortical rim of the resected surface increased with varus inclination in the fixed model and decreased with varus inclination in the variable model (Fig.3B). Changes in the Von Mises stress on the anterior and posterior corner of the resected surfaces did not differ between the fixed and variable model. Discussion. Varus inclination of the tibial component has been considered to increase the bone stress in previous studies. However, in the current study, bone stress on the medial metaphyseal cortex and the medial cortical rim of the resected surface conversely decreased in varus inclination when the change of the femorotibial contact point was taken into consideration. Recent opinion has advocated that restoring the constitutive patient's anatomy by compensating cartilage wear is critical in producing the excellent clinical outcome after UKA. Therefore, three to five degrees of anatomical varus inclination of the tibial component would reduce the tibial condylar bone stress and protective against complications such as unknown postoperative pain or tibial component migration. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 67 - 67
1 Jan 2011
Al-Hajjar M Jennings LM Leslie IJ Fisher J
Full Access

Ceramic-on-ceramic total hip replacements (THRs) have shown low wear volumes in standard gait hip simulator studies. 1. However clinical reports have indicated a variation in wear rates and formation of stripe wear on the ceramic femoral heads. 2. The aim of this study was to investigate the influence of different clinical conditions such as cup inclination angle and microseparation (head offset deficiency) on the wear of ceramic-on-ceramic THRs. The six station Leeds II hip joint simulator was used to investigate the wear of size 28mm ceramic-on-ceramic bearing couples. The alumina matrix composite ceramic material (AMC, Biolox Delta, CeramTec AG, Germany) was used in this study. The lubricant used was 25% bovine serum. The study was carried out for a total of five million cycles; the first two million cycles under standard gait conditions and a further three million cycles under microseparation conditions. During microseparation, a lateral movement of 0.5mm was applied to the cup relative to the head during the swing phase of the gait cycle. 3. Three of the cups were mounted to provide a clinical angle of 55°, which is referred to as the ‘standard’ condition; and the other three cups were mounted to provide a clinical angle of 65°, which is referred to as the ‘steep angle’ condition. These combinations provided four different testing conditions: standard, steep cup angle, microseparation, and combination of steep cup angle and microseparation conditions. Volumetric wear was determined gravimetrically and statistical analysis was performed using One Way ANOVA (significance at p< 0.05). Increasing the cup inclination angle from 55° to 65° had no significant effect on the wear rate in Biolox Delta ceramic-on-ceramic THRs under both standard (p> 0.42) and microseparation (p> 0.55) conditions. Under standard gait conditions, the mean wear rate for both cup inclination angles was very low at 0.05 mm3/million cycles. The introduction of microseparation to the standard gait cycle significantly increased the mean wear rates (p< 0.01) to 0.13 mm3/ million cycles for the ‘standard’ cup inclination angle of 55° and 0.11 mm3/million cycles for the ‘steep’ cup inclination angle of 65°. A stripe of wear on the head also formed, with corresponding superior rim wear on the cup. For comparison, the steady state wear rate of HIPed third generation alumina ceramic (Biolox Forte) under microseparation conditions was 1.3 mm3/million cycles [. 4. ]. In conclusion, increasing the cup inclination angle by 10° had no influence on the wear rate of Biolox Delta ceramic-on-ceramic bearings. The introduction of microseparation conditions significantly increased the wear rate and resulted in stripe-like wear on the femoral head, which has previously been observed on retrieved ceramic prosthesis. However, these wear rates were still low, and were ten times lower than those previously reported for Biolox Forte


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 16 - 16
1 Mar 2017
Steppacher S Zurmuehle C Christen M Tannast M Zheng G Christen B
Full Access

Introduction. Navigation in total hip arthroplasty (THA) has the goal to improve accuracy of cup orientation. Measurement of cup orientation on conventional pelvic radiographs is susceptible to error due to pelvic malpositioning during acquisition. A recently developed and validated software using a postoperative radiograph in combination with statistical shape modelling allows calculation of exact 3-dimensional cup orientation independent of pelvic malpositioning. Objectives. We asked (1) what is the accuracy of computer-navigated cup orientation (inclination and anteversion) and (2) what is the percentage of outliers (>10° difference to aimed inclination and anteversion) using postoperative measurement of 3-dimensional cup orientation. Methods. We performed a retrospective comparative study including a single surgeon series with 114 THAs (109 patients). Surgery was performed through the anterolateral approach with the patient in supine position. An image-free navigation system (PiGalileo, Smith & Nephew) with a passive digital reference base for the pelvic wing and one for the distal femur was used. The anterior pelvic plane (APP) was registered manually using a pointer and used as anatomical reference. After implantation of the press-fit cup (EP-Fit plus, Smith & Nephew) the final cup orientation (inclination and anteversion) was registered with the navigation system. Postoperative orientation was calculated using validated software to calculate 3-dimensional cup orientation. The postoperative anteroposterior pelvic radiograph in combination with a statistical model of the pelvis allowed calculation of inclination and anteversion referenced to the APP. The software was previously validated using CT measurements and revealed a mean accuracy of 0.4° for inclination 0.6° for anteversion with a maximum error of 3.3° and 3.6°, respectively. The mean postoperative inclination in the current series was 46° ± 4° (range, 35° – 60°) and the mean anteversion was 23° ± 6° (range, 11° – 37°). Accuracy was calculated as the absolute difference of the intraoperative registered cup orientation and the postoperative calculated orientation. An outlier was defined if cup orientation was outside a range of ±10° of inclination and/or anteversion. Results. (1) The mean accuracy for inclination was 3 ± 3° (0 – 17°) and 6 ± 5° (0 – 22°) for anteversion. (2) Three out of 114 cups (3%) were outliers for inclination. An increased percentage of outliers was found for anteversion with 23 out of 114 cups (20%; p<0.001). In total, 25 cups (22%) were outliers (See Figure 1). Conclusions. Previous studies evaluating accuracy of cup orientation were limited in numbers of hips due to the use of CT or used measurements on conventional postoperative radiographs which are prone to error due to pelvic malpositioning. Novel and validated software allows accurate and anatomically referenced measurement of postoperative cup orientation. This study is the single largest case series with 3-dimensional measurement of cup orientation for validation of navigated THA. Computer-assisted image-free navigation of cup orientation showed a high accuracy of cup orientation with 78% within a narrow range of ±10° of inclination and anteversion. Accuracy of cup inclination was increased compared to cup anteversion. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 20 - 20
1 Mar 2006
Cakmak G Gokhan C Ulunay K Baris K Haluk Y Selcuk B
Full Access

Aim: The PASA (proximal articular surface angle) is a very useful measurement of the hallux metatarsal articular orientation for the preoperative evaluation and the selection of the surgical procedure. The measurement of PASA is found to be dependent mostly to the evaluator. The spatial orientation of the hallux can affect the measurement of PASA. In this study we try to evaluate the effect of pronation and the inclination of the first metatarsal on the measurement of PASA in 10 cadaver first metatarsals. Material and Methods: The study is made on 10 cadaver first metatarsals. The metatarsals are fixed to a device. The metatarsal inclination and pronation of the metatarsal can be changed by this device. 15-30-45 degrees inclination and 0-10-20 degrees pronation are applied to the metatarsals. After applying radio opaque putty to the medial and lateral articular edges; metatarsal dorsal diaphysial ridge, the x-ray and digital images are taken at different degrees of inclination and pronation. The measurement of PASA is done by graphic software on computer. The statistical analysis is performed by paired sample T-test. Results: We found that changing the inclination has no effect on PASA (p> 0.1). The pronation of first metatarsal has found to have a positive effect on PASA (p< 0.005). As the degree of pronation increases, the degree of PASA is found to be increased also. No difference was found between the measurements of x-ray and digital photography images. Discussion: Inclination of the first metatarsal can change depending on the height of the medial longitudinal arch. By this experimental study we tried to simulate the pes cavus and pes planus deformity on the radiologic measurement of the hallux by modifying the inclination and pronation of the first metatarsal. According to the current study, inclination has no effect on measurement of PASA. Pronation of the first metatarsal accompanies some hallux deformities. As pronation influences the measurement of PASA, the current data suggests that the measurement of PASA is not suitable for making clinical and surgical decisions


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 466 - 466
1 Nov 2011
McGann W Peter J Liddle K Currey J Marmor M Buckley J
Full Access

Achieving the correct inclination angle for the acetabular component in total hip arthroplasty (THR) can be technically challenging. The aim of this study is to validate the use of a simple, laser-guided system to address the acetabular cup inclination angle intraoperatively and quantify its accuracy and repeatability across users. A simple inclinometer system was manufactured, consisting of a laser that snaps into both the inclinometer and the handle of a standard trial cup impacter. The system functions as follows:. desired inclination angle is set on the inclinometer,. inclinometer is positioned on the acetabulum,. laser beam is projected onto and marked on a screen outside of the surgical exposure,. the impacter is reoriented in the acetabulum until the laser beam aligns with the recorded mark on the screen. A validation study was performed on this system using intact cadavers (N=4). A THR-specific. Trial acetabular components were installed unilaterally in each donor using both the laser inclinometer system with an in-line mounted intraoperative navigation system (NaviVision, Vector Vision Hip 3.1, BrainLab) serving as the measurement standard. Three orthopaedic surgeons participated in the study, two experienced with the device (“experts”) and one “novice”, and each surgeon performed two sequential validation experiments:. 10 trials at a set device inclination angle, and. 5 trials of matching the trial cup placement to this set angle. Using the laser-guided system, the inclination angle of the trial cup deviated from the desired orientation by 1.1±0.9° (mean st. dev; range: 0–3°) for all specimens across all operators. The corresponding error in anteversion angle was 1.4±1.3° (range: 0–5°). There was no difference in inclination angle between expert and novice surgeons (1.0±0.8° versus 1.1±1.2°, respectively; p> 0.10 for unpaired t-test). To set the desired inclination angle on the trial cup, original and final laser target positions were within 4.1±2.5 cm at 1 m screen placement. Results suggest that the laser-guided system has sufficient accuracy and repeatability for use intra-operatively. Inclination angles differed from prescribed angles by 1° on average, and malalignment in anteversion was subclinical, ≤5° for all cases. Furthermore, the tolerance for laser re-alignment sufficiently large (5–10 cm) to make the device functional intraoperatively. Future work will focus on expanding the sample size and correcting simple design limitations in the device