Advertisement for orthosearch.org.uk
Results 1 - 20 of 100
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 31 - 31
1 Oct 2022
v. Dijk B v. Duyvenbode FH de Vor L Nurmohamed FRHA Lam M Poot A Ramakers R Koustoulidou S Beekman F v. Strijp J Rooijakkers S Dadachova E Vogely HC Weinans H van der Wal BC
Full Access

Aim. Implant infections caused by Staphylococcus aureus are difficult to treat due to biofilm formation, which complicates surgical and antibiotic treatment. Herewith we introduce an alternative approach using monoclonal antibodies (mAbs) targeting S. aureus and provide the biodistribution and specificity in a mouse implant infection model. Methods. 4497-IgG1targeting S. aureus Wall Teichoic Acid was labeled to Indium-111 using “CHXA” as a chelator. SPECT-CT scans were performed at 24, 72 and 120 hours after administration in Balb/cAnNCrl mice with a subcutaneous implant pre-colonized with biofilm of S. aureus. Biodistribution over the various organs of this labelled antibody was visualized and quantified using SPECT-CT imaging and compared to uptake at the target tissue with implant infection. Results. Uptake of the . 111. In-4497 mAbs (half-life 59 hours) at the infected implant gradually increased from 8.34%ID/g at 24 hours to 9.22%ID/g at 120 hours. Uptake at the heart/blood pool decreased over time from 11.60 to 7.58%ID/g whereas the uptake in other organs decreased from 7.26 to less than 4.66%ID/g at 120 hours. Conclusion. 111. In-4497 mAbs was found to specifically detect S. aureus and its biofilm with excellent and prolonged accumulation at the colonized implant site. Therefore, it holds great promise as a drug delivery system for diagnostic and bactericidal treatment of biofilm. However, high activity in the blood pool must be considered as it could pose a risk to healthy tissue


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 4 - 4
1 Dec 2019
Suda A Landua N Miethke T
Full Access

Aim. Diagnostics of orthopedic implant infection remains challenging and often shows false negative or inadequate results. Several methods have been described to improve diagnostic methods but most of them are expensive (PCR) or not accessible for all hospitals (sonication). Aim of this study was to evaluate the results of incubation of orthopedic explants compared to biopsies and punction fluid using conventional microbiological methods. Method. In this prospective study, we included patients who received septic or aseptic orthopedic implant removal in a single University hospital between July and December 2018. A part of the explant as well as minimum 2 tissue biopsies or additional punction fluid were put in a bouillon and incubated for 11 days. Patient´s records with co-morbidities, use of antibiotics and demographic data were evaluated. The results were analyzed. The study was approved by the ethical committee. Results. 94 patients were included in this study (43 females, 51 males, mean age 54 years). We detected statistically significant more pathogens in the bouillon with explants compared to biopsies (p=0,0059). We found the same results with pedicle screws (n=11, p=0,039) and endoprosthesis (n=56, p=0,019). Patients after osteosynthesis (p=27) showed same results but statistically not significant (p=0,050). Use of antibiotics did not have influence on the diagnostic result as well as co-morbidities. In 38 patients (40,4%), additional bacteria could be detected in explant´s bouillon. Most common pathogens were Staph. aureus, E. faecalis, Staph. epidermidis and Micrococcus luteus, mixed infections could be found in 9%. Conclusions. In this study we could show that incubation of orthopedic implants has advantages in diagnostics of pathogens in infected endoprosthesis, osteosynthesis and spondylodesis. This method is simple compared to PCR or sonication and as cheap as incubation of tissue samples but in 40% of the cases, additional pathogens can be detected. We recommend to incubate removed screws, hip endoprosthetic heads or inlays in bouillon to optimize diagnostics and to detect all pathogens


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 69 - 69
1 Dec 2019
Grossi O Lamberet R Touchais S Corvec S Bemer P
Full Access

Aim. Cutibacterium acnes is a significant cause of late-onset spinal implant infection (SII). In addition, usual preoperative prophylactic measures may be insufficient to prevent C. acnes operating site colonisation and infection, as demonstrated for prosthetic shoulder surgery. However, little information is available regarding risk factors for SII due to this microorganism. The aims of this study were to determine the characteristics of and risk factors for C. acnes SII. Method. we conducted a retrospective unmatched case-control study including all adult patients treated for mono and polymicrobial C. acnes SII during 2010–2015. Controls were randomly selected among patients diagnosed with SII due to other microorganisms during the same period. Results. Fifty-nine patients with C. acnes SII were compared with 59 controls. There was no difference in sex distribution (39% vs 53% men). Patients with C. acnes SII were younger (median age 42 vs. 65, p< 0.001), thinner (median body mass index (BMI) 21 vs. 25 kg/m. 2. , p< 0.001), and presented a better health status (ASA score≤ 2, 83% vs. 65%, p= 0.015; and presence of immunosuppression, 3% vs. 27%, p= 0.002). Patients with C. acnes SII were more likely to experience delayed/late infections (i.e. diagnosed >3 months post-instrumentation, 66% vs. 22%, p< 0.001) and to be instrumented for scoliosis (83% vs. 27%, p< 0.001) with an extended osteosynthesis (median number of fused vertebrae 12 vs. 5, p< 0.001). However, 20 C. acnes SII (34%) developed early (≤3 months) after instrumentation. The clinical presentation was significantly more indolent in the C. acnes group (presence of fever, 27% vs. 61%, p= 0.001; wound inflammation 39% vs. 61%, p< 0.001 and median C-reactive protein level 38 vs. 146 mg/L). Mixed C. acnes SII were diagnosed on 24 occasions (41%), 22 of which involving both C. acnes and staphylococcal strains. In the multivariate logistic regression model, factors independently associated with the development of SII involving C. acnes were age less than 65 (adjusted odds ratio [aOR] 7.13, 95% CI [2.44–24.4], p= 0.001), BMI< 22kg/m. 2. (aOR 3.71 [1.34–10.7], p= 0.012) and a number of fused vertebrae >10 (aOR 3.90 IC 95% [1.51–10.4], p= 0.005). Conclusions. There were significant differences between SII involving C. acnes and those involving other microorganisms. We identified a specific profile of patients at increased risk of developing C. acnes SII. These findings could contribute to improve both the prevention and treatment of such infections


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_21 | Pages 21 - 21
1 Dec 2017
Drampalos E Mohammad H Halim U Balal M Wong J Pillai A
Full Access

Aim. To evaluate the clinical outcome of a new absorbable, gentamycin loaded calcium sulfate/hydroxyapatite biocomposite (CERAMENT. ™. /G) as cavity filler after debridement and removal of infected metalwork in chronic osteomyelitis. Methods. We report the retrospective study of prospectively collected data from 36 patients with chronic osteomyelitis from implant infection. Treatment included a single stage protocol with removal of the metalwork, debridement augmented with application of CERAMENT. ™. /G, stabilization, culture-specific antibiotics and primary skin closure or flap. The biocomposite was used for dead space filling after resection of Cierny-Mader (C-M) stage III and IV chronic osteomyelitis. Data were collected on patient age, comorbidities, operation details, microbiology, postoperative complications and type of fixation or plastic surgery. Primary measure of outcome was recurrence rate. Results. According to the C-M classification 22 patients (63%) were defined as Type III and 13 (37%) as Type IV. A total of 26 (72%) patients were Class B hosts. In 9 cases (25%), there was an infected non-union and 1 patient had septic arthritis. Mean age was 52 years (range 22 to 81). Patients were followed for a mean of 20 months (range 6 to 36). Infection was eradicated in 32 patients. There were three (8.3%) recurrences (two cases of osteomyelitis and one of soft tissue/flap infection). Two of them were successfully managed with repeat surgery (one Class B and one Class A host) and one (Class B host) with suppressive antibiotic therapy as per patient's choice. In one infected nonunion the infection was eradicated but the nonunion persisted. Thirteen patients (36.6%) had a local or free fascio-cutaneus flap. Staphylococci (50%) and Enterococci (15%) were the most common microorganisms. Pseudomonas aeruginosa was more common in polymicrobial infection usually with Staphylococcus aureus. Conclusions. A multidisciplicary approach including augmented debridement with CERAMENT. ™. /G is effective for treatment of chronic osteomyelitis with infected metalwork


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 21 - 21
1 Jan 2017
Thompson K Freitag L Eberli U Camenisch K Arens D Richards G Stadelmann V Moriarty F
Full Access

This longitudinal microCT study revealed the osteolytic response to a Staphylococcus epidermidis-infected implant in vivoand also demonstrates how antibiotics and/or a low bone mass state influence the morphological changes in bone and the course of the infection. Colonisation of orthopaedic implants with Staphylococcus aureusor S. epidermidisis a major clinical concern, since infection-induced osteolysis can drastically impair implant fixation or integration within bone. High fracture incidence in post-menopausal osteoporosis patients means that this patient group are at risk of implant infection. The low bone mass in these patients may exacerbate infection-induced osteolysis, or alter antibiotic efficacy. Therefore, the aims of this study were to examine the bone changes resulting from a S. epidermidisimplant infection in vivousing microCT imaging, and to determine if a low bone mass stateinfluences the course of the infection and the efficacy of antibiotic therapy. An in vivomodel system using microCT scanning [1], involving the implantation of either a sterile or a S. epidermidis-colonised PEEK screw into the proximal tibia of 24 week-old female Wistar rats, was used to investigate the morphological changes in bone following infection over a 28 day period. In addition, the efficacy of a combination antibiotic therapy (rifampin and cefazolin: administered twice daily from days 7–21 post-screw implantation) for affecting osteolysis was also assessed. A subgroup of animals was subjected to ovariectomy (OVX) at 12 weeks of age, allowing for a 12 week period for bone loss prior to screw implantation at 24 weeks. Bone resorption and formation rates, bone-implant contact and peri-implant bone volume in the proximity of the screw were assessed by microCT scanning at days 0, 3, 6, 9, 14, 20 and 28 days post-surgery. Following euthanasia at day 28, the implanted screw, bone and soft tissues were subjected to quantitative bacteriology as a measure of the efficacy of the antibiotic regimen. In non-OVX animals S. epidermidisinfection induced marked osteolysis, which peaked between 9 and 14 days post-screw implantation. Peak bone resorption was detected at day 6, before recovering to baseline levels at day 14. Infection also resulted in extensive deposition of mineralised tissue, initially within the periosteal region (day 9–14), then subsequently in the osteolytic region at day 20–28. Quantitative bacteriology indicated all non-OVX animals remained infected. Rifampin and cefazolin successfully cleared the infection in 5/6 non-OVX animals group although there was no difference observed in CT-derived bone parameters. OVX resulted in extensive loss of trabecular bone but this did not alter the temporal pattern of infection-induced osteolysis, or mineralised tissue deposition, which was similar to that observed in the non-OVX animals. Similarly, there was no difference in bacterial counts between non-OVX and OVX animals (39,005 colony-forming units (CFU) [range: 3,675–156,800] vs 37,665 CFU [range 3,250–84,000], respectively). Interestingly, antibiotic treatment was less effective in the OVX animals (3/5 remained infected), suggesting that antibiotics have reduced efficacy in OVX animals. This study demonstrates S. epidermidis-induced osteolysis displays a similar temporal pattern in both normal and low bone mass states, with comparable bacterial loads present within the localised infection site


Bone & Joint Research
Vol. 6, Issue 5 | Pages 323 - 330
1 May 2017
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Objectives. Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load in vitro?. Methods. Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Staphylococcus epidermidis; Staphylococcus aureus; Pseudomonas aeruginosa; spore-forming Bacillus cereus; and yeast Candida albicans. The cylinders were exposed to incremental target temperatures (35°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C) for up to 3.5 minutes. Results. There was an average linear heating rate of 0.39°C per second up to the target temperature, and thereafter the target temperature was maintained until the end of the experiment. At 60°C and higher (duration 3.5 minutes), there was a 6-log reduction or higher for every micro-organism tested. At 60°C, we found that the shortest duration of effective induction heating was 1.5 minutes. This resulted in a 5-log reduction or higher for every micro-organism tested. Conclusion. Non-contact induction heating of a titanium disk is effective in reducing bacterial load in vitro. These promising results can be further explored as a new treatment modality for infections of metal orthopaedic implants. Cite this article: B. G. Pijls, I. M. J. G. Sanders, E. J. Kuijper, R. G. H. H. Nelissen. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings. Bone Joint Res 2017;6:323–330. DOI: 10.1302/2046-3758.65.BJR-2016-0308.R1


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 267 - 267
1 Sep 2005
Thornes B Murray P Bouchier-Hayes D
Full Access

Introduction: Histamine is an integral mediator following traumatic injury. Histamine-2 receptors have previously been identified on lymphocytes and monocytes. Materials and methods: Two rodent models (1) Bilateral femoral fracture and intramedullary nailing, with resulting indirect lung injury (n=30). (2) In vivo model of orthopaedic implant contaminated by Staphylococcus epidermidis (n=36). Animals were randomised to receive ranitidine or placebo (saline). Results: Markers of lung injury (MPO activity, BAL proteins and wet:dry ratios) increased 24 hours following bilateral femoral fracture, but were reduced if ranitidine was administered systemically after the injury. Production of Th-1 cytokines was blocked by ranitidine, whilst Th-2 cytokine production remained unaffected by ranitidine. These suggest an anti-inflammatory effect of ranitidine, blocking the early (Th-1) pro-inflammatory response following major injury. Ranitidine’s effect on implant infection rates showed higher rates (44% versus 17%, relative risk 1.8 (95% CI 1.0 to 3.3)) when systemic ranitidine was delivered peri-operatively, suggesting an immunosuppressive effect. Conclusions: The findings highlight the complex balance in vivo, a double-edged sword: the risk of increasing implant infection versus reducing indirect lung injury following major injury. The administration of ranitidine in major trauma patients with severe pro-inflammatory responses may block and reduce early multi-organ dysfunction and improve survival. However, owing to infection, the peri-operative administration of ranitidine should be avoided in elective cases


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 320 - 320
1 Jul 2011
Holinka J Lass R Pfeiffer M Graninger W Hirschl A Presterl E
Full Access

Objectives: Microbial biofilms protect planctonic bacteria growing on the implants surfaces from detection and antibiotic treatment. To investigate the efficacy of sonication cultures in our patients with prosthetic joint infections we compared our findings with the results to those of periprosthetic tissue cultures and histology.

Methods: The sonication cultures of the explanted prosthesis were cultured according to the protocol by Trampuz et al. in the New England Journal of Medicin and using the routine method incubating the aspirated pus and periprosthetic material in brain-heart-infusion broth without sonication. To assess the most frequently affected component of the prosthesis all components were “sono-cultured” separately. The diagnosis of infection was based on the presence of bacteria or leucocytes in pus or tissue plus local signs and symptoms and/or systemic markers of inflammation (fever, leucocytosis, increased C-reactive protein)

Results: We investigated 60 patients with 40 septically and 20 aseptically explanted components of total knee (n=24), hip (n=21) tumor (n=6) and shoulder (n=2) endoprosthesis, as well as osteosynthetic material (n=6) and spinal instrumentation (n=1). The most frequently affected component of the hip prosthesis was the femoral head (100%) and the inlay (88%), of the knee prosthesis was the Patella (58%) and the tibia plateau (56%), of the tumor prosthesis were the polyethylene components (100%), of the shoulder prosthesis was the sphere and stem (each 100%), of the osteosynthesis material were the plate and screws (each 33%) and of the spine instrumentation were the rod and the screws (each 100%). From all detected pathogens in sonication cultures the most frequently were Staphylococcus aureus (25%), Staphylococcus epidermidis (22%) and Streptococci (13%). The sensitivity of sonication cultures and periprosthetic tissue cultures was 85% and 78% without preoperative antibiotic therapy compared with histological analysis of 100% sensitivity. The specificity was 89% for sonication cultures, 95% for periprosthetic tissue cultures and 100% for histological analysis.

Conclusion: Our results of separating the explanted components for sonication culture proved the detection of valid pathogens for every kind of endoprosthesis or implants and supplied further information for the focus of infection.


Bone & Joint Research
Vol. 13, Issue 8 | Pages 383 - 391
2 Aug 2024
Mannala GK Rupp M Walter N Youf R Bärtl S Riool M Alt V

Aims. Bacteriophages infect, replicate inside bacteria, and are released from the host through lysis. Here, we evaluate the effects of repetitive doses of the Staphylococcus aureus phage 191219 and gentamicin against haematogenous and early-stage biofilm implant-related infections in Galleria mellonella. Methods. For the haematogenous infection, G. mellonella larvae were implanted with a Kirschner wire (K-wire), infected with S. aureus, and subsequently phages and/or gentamicin were administered. For the early-stage biofilm implant infection, the K-wires were pre-incubated with S. aureus suspension before implantation. After 24 hours, the larvae received phages and/or gentamicin. In both models, the larvae also received daily doses of phages and/or gentamicin for up to five days. The effect was determined by survival analysis for five days and quantitative culture of bacteria after two days of repetitive doses. Results. In the haematogenous infection, a single combined dose of phages and gentamicin, and repetitive injections with gentamicin or in combination with phages, resulted in significantly improved survival rates. In the early-stage biofilm infection, only repetitive combined administration of phages and gentamicin led to a significantly increased survival. Additionally, a significant reduction in number of bacteria was observed in the larvae after receiving repetitive doses of phages and/or gentamicin in both infection models. Conclusion. Based on our results, a single dose of the combination of phages and gentamicin is sufficient to prevent a haematogenous S. aureus implant-related infection, whereas gentamicin needs to be administered daily for the same effect. To treat early-stage S. aureus implant-related infection, repetitive doses of the combination of phages and gentamicin are required. Cite this article: Bone Joint Res 2024;13(8):383–391


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 5 - 5
19 Aug 2024
Gevers M Vandeputte F Welters H Corten K
Full Access

High doses of intra-articular (IA) antibiotics has been shown to effectively achieve a minimal biofilm eradication concentration which could mitigate the need for removal of infected but well-ingrown cementless components of a total hip arthroplasty (THA). However, there are concerns that percutaneous catheters could lead to multi-resistance or multi-organism peri-prosthetic joint infections (PJI) following single stage THA revisions for PJI. Eighteen single-stage revision procedures were performed for acute (N=9) or chronic (N=9) PJI following a primary (N=12) or revision (N=6) cementless THA. Modular and loosened components were replaced. All well ingrown components were retained. Two Hickmann catheters were placed in the joint space. Along with intravenous antibiotics, IA antibiotics were injected twice a day for two weeks, followed by 3 months of oral antibiotics. Per-operative cultures demonstrated 4 multi-bacterial PJIs. None of the patients developed post-operatively an AB related renal or systemic dysfunction. At a mean follow-up of 38 months [range, 8–72] all patients had normal erythrocyte sedimentation rate and white blood cell count. Four had a slightly elevated C-reactive protein but were completely symptom free and did not show any sign of loosening at a mean of 27 months [range, 16–59]. Addition of high doses of IA antibiotics following single-stage revision for PJI in cementless THA, is an effective and safe treatment option that allows for retention of well-ingrown components. We found no evidence for residual implant infection or catheter induced multi-resistance. Total hip arthroplasty, revision surgery, Periprosthetic Joint Infection, Intra-articular antibiotics. Level 4 (Case series)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 138 - 138
4 Apr 2023
Markel D Dietz P Wu B Bou-Akl T Ren W
Full Access

The efficacy of saline irrigation for the treatment of periprosthetic infection (PJI) is limited in the presence of infected implants. This study evaluated the efficacy of vancomycin/tobramycin-doped polyvinyl alcohol (PVA)/ceramic composites (PVA-VAN/TOB-P) after saline irrigation in a mouse pouch infection model. 3D printed porous titanium (Ti) cylinders (400, 700 and 100 µm in pore size) were implanted into mice pouches, then inoculated with S. aureus at the amounts of 1X10. 3. CFU and 1X10. 6. CFU per pouch, respectively. Mice were randomized into 4 groups (n=6 for each group): (1) no bacteria; (2) bacteria without saline wash; 3) saline wash only, and (4) saline wash+PVA-VAN/TOB-P. After seven days, pouches were washed out alone or with additional injection of 0.2 ml of PVA-VAN/TOB-P. Mice were sacrificed 14 days after pouch wash. Bacteria cultures of collected Ti cylinders and washout fluid and histology of pouch tissues were performed. The low-grade infection (1X10. 3. CFU) was more significant in 400 µm Ti cylinders than that in Ti cylinders with larger pore sizes (700 and 1000 µm (p<0.05). A similar pattern of high-grade infection (1X10. 6. CFU) was observed (p<0.05). For the end wash, the bacteria burden (0.49±0.02) in saline wash group was completely eradicated by the addition of PVA-VAN/TOB-P (0.005±0.001, p<0.05). We noticed that 400 µm Ti cylinders have the highest risk of implant infection. Our data supported that the effect of saline irrigation was very limited in the presence of contaminated porous Ti cylinders. PVA-VAN/TOB-P was biodegradable, biocompatible, and was effective in eradicating bacteria retention after saline irrigation in a mouse model of low grade and high-grade infection. We believe that PVA-VAN/TOB-P represents an alternative to reduce the risk of PJI by providing a sustained local delivery of antibiotics


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 45 - 45
2 Jan 2024
Riool M Li R Hofwegen L de Boer L Loontjens J Zaat S
Full Access

Infection of implanted medical devices (biomaterials), like titanium orthopaedic implants, can have disastrous consequences, including removal of the device. These so-called biomaterial-associated infections (BAI) are mainly caused by Staphylococcus aureus and Staphylococcus epidermidis. To prevent biofilm formation using a non-antibiotic based strategy, we aimed to develop a novel permanently fixed antimicrobial coating for titanium devices based on stable immobilized quaternary ammonium compounds (QACs). Medical grade titanium implants were dip-coated in subsequent solutions of hyperbranched polymer, polyethyleneimine and 10 mM sodium iodide, and ethanol. The QAC-coating was characterized using water contact angle measurements, scanning electron microscopy, FTIR, AFM and XPS. The antimicrobial activity of the coating was evaluated against S. aureus strain JAR060131 and S. epidermidis strain ATCC 12228 using the JIS Z 2801:2000 surface microbicidal assay. Lastly, we assessed the in vivo antimicrobial activity in a mouse subcutaneous implant infection model with S. aureus administered locally on the QAC-coated implants prior to implantation to mimic contamination during surgery. Detailed material characterization of the titanium samples showed the presence of a homogenous and stable coating layer at the titanium surface. Moreover, the coating successfully killed S. aureus and S. epidermidis in vitro. The QAC-coating strongly reduced S. aureus colonization of the implant surface as well as of the surrounding tissue, with no apparent macroscopic signs of toxicity or inflammation in the peri-implant tissue at 1 and 4 days after implantation. An antimicrobial coating with stable quaternary ammonium compounds on titanium has been developed which holds promise to prevent BAI. Non-antibiotic-based antimicrobial coatings have great significance in guiding the design of novel antimicrobial coatings in the present, post-antibiotic era. Acknowledgements: This research was financially supported by the Health∼Holland/LSH-TKI call 2021–2022, project 25687, NACQAC: ‘Novel antimicrobial coatings with stable non-antibiotic Quaternary Ammonium Compounds and photosensitizer technology'


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 21 - 21
2 Jan 2024
Harting H Polyak A Angrisani N Herrmann T Ehlert N Meißner J Willmann M Al-Bazaz S Ross T Bankstahl J Reifenrath J
Full Access

In orthopedic surgery, implant infections are a serious issue and difficult to treat. The aim of this study was to use superparamagnetic nanoporous silica nanoparticles (MNPSNP) as candidates for directed drug delivery. Currently, short blood circulation half-life due to interactions with the host's immune system hinder nanoparticles in general from being clinically used. PEGylation is an approach to reduce these interactions and to enhance blood circulation time. The effect of PEGylation of the used . 68. Ga-labelled MNPSNP on the distribution and implant accumulation was examined by PET/CT imaging and gamma counting in an implant mouse model. Female Balb/c mice (n=24) received a magnetic implant subcutaneously on the left and a titanium implant on the right hind leg. On day one, 12 of these mice received an additional clodronate®-injection for macrophage depletion. On the second postoperative day, mice were anaesthetized and MNPSNP (native or PEGylated) injected intravenously, followed by a dynamic PET-scan over 60 minutes, a CT- and a static PET-scan at 120 min. As control, 12 mice received only . 68. Ga-MNPSNP (native or PEGylated). Gamma counting of inner organs, urine, blood and implant area was performed as further final analysis. Although PEGylation of the nanoparticles already resulted in lower liver uptakes, both variants of . 68. Ga-labeled MNPSNP accumulated in liver and spleen. Combination of PEGylation with clodronate®-injection led to a highly significant effect whereas clodronate®-injection alone could not reveal significant differences. In gamma counting, a significantly higher %I.D./g was found for the tissue surrounding the magnetic implants compared to the titanium control, although in a low range. PEGylation and/or clodronate®-injection revealed no significant differences regarding nanoparticle accumulation at the implantation site. PEGylation increases circulation time, but MNPSNP accumulation at the implant site was still insufficient for treatment of infections. Additional efforts have to further increase circulation time and local accumulation. Acknowledgements: This work is funded by the German Research Foundation (DFG, project number 280642759)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 29 - 29
24 Nov 2023
Riool M Li R van Hofwegen L Vavilthota N de Boer L Loontjens J Zaat S
Full Access

Aim. The use of medical devices has grown significantly over the last decades, and has become a major part of modern medicine and our daily life. Infection of implanted medical devices (biomaterials), like titanium orthopaedic implants, can have disastrous consequences, including removal of the device. For still not well understood reasons, the presence of a foreign body strongly increases susceptibility to infection. These so-called biomaterial-associated infections (BAI) are mainly caused by Staphylococcus aureus and Staphylococcus epidermidis. Formation of biofilms on the biomaterial surface is generally considered the main reason for these persistent infections, although bacteria may also enter the surrounding tissue and become internalized within host cells. To prevent biofilm formation using a non-antibiotic based strategy, we aimed to develop a novel permanently fixed antimicrobial coating for titanium devices based on stable immobilized quaternary ammonium compounds (QACs). Method. Medical grade titanium implants (10×4×1 mm) were dip-coated in a solution of 10% (w/v) hyperbranched polymer, subsequently in a solution of 30% (w/v) polyethyleneimine and 10 mM sodium iodide, using a dip-coater, followed by a washing step for 10 min in ethanol. The QAC-coating was characterized using water contact angle measurements, scanning electron microscopy, FTIR, AFM and XPS. The antimicrobial activity of the coating was evaluated against S. aureus strain JAR060131 and S. epidermidis strain ATCC 12228 using the JIS Z 2801:2000 surface microbicidal assay. Lastly, we assessed the in vivo antimicrobial activity in a mouse subcutaneous implant infection model with S. aureus administered locally on the QAC-coated implants prior to implantation to mimic contamination during surgery. Results. Detailed material characterization of the titanium samples showed the presence of a homogenous and stable coating layer at the titanium surface. Moreover, the coating successfully killed S. aureus and S. epidermidis in vitro. The QAC-coating strongly reduced S. aureus colonization of the implant surface as well as of the surrounding tissue, with no apparent macroscopic signs of toxicity or inflammation in the peri-implant tissue at 1 and 4 days after implantation. Conclusions. An antimicrobial coating with stable quaternary ammonium compounds on titanium has been developed which holds promise to prevent BAI. Non-antibiotic-based antimicrobial coatings have great significance in guiding the design of novel antimicrobial coatings in the present, post-antibiotic era


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 54 - 54
1 Oct 2022
Mitterer JA Frank BJ Gardete-Hartmann S Panzenboek LF Simon S Krepler P Hofstaetter JG
Full Access

Aim. In severe cases of postoperative spinal implant infections (PSII) multiple revision surgeries may be needed. Little is known if changes of the microbiological spectrum and antibiotic resistance pattern occur between revision surgeries. Therefore, the aim of this study was to analyze the microbiological spectrum and antibiotic resistance pattern in patients with multiple revision surgeries for the treatment of PSII. Furthermore, changes of the microbiological spectrum, distribution of mono vs. polymicrobial infections, and changes of the antimicrobial resistance profile in persistent microorganisms were evaluated. Method. A retrospective analysis of a prospectively maintained single center spine infection database was performed with a minimum follow-up of 3 years. Between 01/2011 and 12/2018, 103 patients underwent 248 revision surgeries for the treatment of PSII. Overall, 20 patients (6 male/14 female) underwent 82 revisions for PSII (median 3; range 2–12). There were 55/82 (67.1%) procedures with a positive microbiological result. Microbiological analysis was performed on tissue and implant sonication fluid. Changes in microbial spectrum and antibiotic resistance pattern between surgeries were evaluated using Chi-Square and Fisher's exact test. Results. In total, 74 microorganisms (83.3% gram-positive; 10.8% gram-negative) were identified. The most common microorganisms were Staphylococcus epidermidis (18.9%) and Cutibacterium acnes (18.9%). All S. epidermidis identified were methicillin-resistant (MRSE). Overall, there were 15/55 (27.3%) polymicrobial infections. The microbiological spectrum changed in 57.1% (20/35) between the revision stages over the entire PSII period. In 42.9% (15/35) the microorganism persisted between the revision surgeries stages. Overall, changes of the antibiotic resistance pattern were seen in 17.4% (8/46) of the detected microorganisms comparing index revision and all subsequent re-revisions. Moreover, higher resistance rates were found for moxifloxacin and for ciprofloxacin at first re-revision surgery compared with index PSII revision. Resistances against vancomycin increased from 4.5% (1/23) at index PSII revision to 7.7% (2/26) at first re-revision surgery. Conclusions. Changes of the microbiological spectrum and the resistance pattern can occur in patients with severe PSII who require multiple revision surgeries. It is important to consider these findings in the antimicrobial treatment of PSII. The microbiological analysis of intraoperative tissue samples should be performed at every revision procedure for PSI


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 49 - 49
24 Nov 2023
Azamgarhi T Perez-Sanchez C Warren S Scobie A Karunaharan N Houghton R Hassan S Kershaw H Sendi P Saeed K
Full Access

Aim. Dalbavancin is a lipoglycopeptide with a half-life of 14 days (range 6.1 to 18.4), significantly longer than other antimicrobials, which avoids the need for daily antibiotic dosing. This multi-centre observational study aims to describe the use of dalbavancin to facilitate discharge in treating bone and joint infections. Method. All adult patients treated with dalbavancin from January 2017 to September 2022 in four UK bone infection units were included. Data collected through a standardised data collection form included:. Clinical and microbiological characteristics. Hospital length of stay. Complications. Patient suitability for hypothetical treatment options, such as Outpatient Parenteral. Antibiotic Team (OPAT). Clinical outcome. Treatment-related costs were calculated for dalbavancin and the preferred hypothetical treatment option that would have been administered for the same duration. The costs were subtracted to calculate the cost difference. Clinical success was defined as the absence of definite failure in accordance with the OVIVA Trial protocol. Results. Thirty-six patients were included: 20 males and 16 females, with a median age of 53 (IQR 43–73): Thirteen were septic arthritis, twelve were prosthetic joints, seven were spondylodiscitis and five were other orthopaedic-related implant infections. In twenty cases the infecting organism was Staphylococcus aureus, fourteen were due to coagulase-negative staphylococci and two no cultured organism. Reasons for dalbavancin. The reasons for choosing dalbavancin over alternatives were due to either:. Necessity due to poor adherence (21), or lack of viable OPAT options due to antibiotic resistance or intolerance (7). OR. Convenience to avoid the need for OPAT (8). Dalbavancin was initiated at 1500mg after a median of 12 days (IQR 6–17) of in-hospital antimicrobial therapy. Subsequent dalbavancin doses were based on clinical decisions and ranged from 1000mg to 1500mg. Healthcare benefits. Switching to dalbavancin reduced treatment costs by a median of £3526 (IQR 1118 - 6251) compared with the preferred theoretical alternatives. A median of 31 hospital days (IQR 23–47) was avoided among patients who would have required a prolonged inpatient stay. Outcome. Overall, 20 patients (55.6%) were successfully treated after a median follow-up of 8 months (IQR, 5.8 – 18.4). No patients developed an adverse drug reaction. Conclusions. Dalbavancin can safely facilitate outpatient treatment in patients with limited oral options and in whom OPAT is unsuitable. Dalbavancin is cost-effective compared with the alternative of an inpatient stay


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 85 - 85
1 Oct 2022
Mannala G Rupp M Alt V
Full Access

Aim. Fungal periprosthetic joint infections are difficult to treat and often associated with a limited outcome for patients. Candida species account for approximately 90% of all fungal infections. In vivo biofilm models play major role to study biofilm development, morphology, and regulatory molecules for bacteria. However, in vivo modeling of biofilm-associated fungi models are very rare. Furthermore, due to ethical restrictions, mammalian models are replaced with other alternative models in basic research. Recently, we have developed insect infection model G. mellonella larvae to study implant associated biofilm infections with bacteria. This model organism was not used for fungi biofilm infection yet. Thus, we aimed to establish G. mellonella as in vivo model to study fungal implant infections using Candida albicans as model organism and to test anti-fungal medication. Method. Titanium and Stainless steel K-wires were cut into small pieces with size of 4mm. For the infection process, implants were pre-incubated in specified fungal growth culture Candida albicans at 1×10. 7. CFU/ml for 30 min at 150 rpm shaking conditions. Later, these implants were washed with 10ml PBS and implanted in the larvae as mentioned. To analyze the susceptibility of the implant-associated fungal infections towards anti fungal compounds, the larvae were treated with amphotericin B, fluconazole and voriconazole after 24h of implantation. The effect of anti-fungal compounds was measured in terms of survival observation for 5 days and fungal load in larvae on 2. nd. day. To reveal the fungal biofilm formation on implant, the implants were removed on day 3 and processed for SEM analysis. Results. Pre-incubated K-wire caused the Candida infection and observed the death of the larvae. The treatment with antifungal compounds recovered the larvae from the implant-infection, except in case of Voriconazole. However, the recovery with treatment of anti fungal compounds was not effective as the larvae with planktonic infection, which highlights typical biofilm phenotype. Further, the treatment with anti-fungal compounds with Amphotericin B and Fluconazole reduced the fungal load in larvae tissue. The SEM analysis revealed the formation fungal biofilm with hyphae and spores associated with larvae tissue on implant surface. Conclusions. The results from survival analysis, antifungal treatment and SEM analysis are very promising to use of G. mellonella as in vivo model to study fungal infections on implanted materials. Our study highlights the use of G. mellonella larvae as alternative in vivo model to study implant-associated fungal infections that reduces the use of the higher mammals


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 82 - 82
1 Dec 2022
Hitchon S Milner J Holdsworth D Willing R
Full Access

Revision surgeries for orthopaedic infections are done in two stages – one surgery to implant an antibiotic spacer to clear the infection and another to install a permanent implant. A permanent porous implant, that can be loaded with antibiotics and allow for single-stage revision surgery, will benefit patients and save healthcare resources. Gyroid structures can be constructed with high porosity, without stress concentrations that can develop in other period porous structures [1] [2]. The purpose of this research is to compare the resulting bone and prosthesis stress distributions when porous versus solid stems are implanted into three proximal humeri with varying bone densities, using finite element models (FEM). Porous humeral stems were constructed in a gyroid structure at porosities of 60%, 70%, and 80% using computer-aided design (CAD) software. These CAD models were analyzed using FEM (Abaqus) to look at the stress distributions within the proximal humerus and the stem components with loads and boundary conditions representing the arm actively maintained at 120˚ of flexion. The stem was assumed to be made of titanium (Ti6Al4V). Three different bone densities were investigated, representing a healthy, an osteopenic, and an osteoporotic humerus, with an average bone shape created using a statistical shape and density model (SSDM) based on 75 cadaveric shoulders (57 males and 18 females, 73 12 years) [3]. The Young's moduli (E) of the cortical and trabecular bones were defined on an element-by-element basis, with a minimum allowable E of 15 MPa. The Von Mises stress distributions in the bone and the stems were compared between different stem scenarios for each bone density model. A preliminary analysis shows an increase in stress values at the proximal-lateral region of the humerus when using the porous stems compared to the solid stem, which becomes more prominent as bone density decreases. With the exception of a few mesh dependent singularities, all three porous stems show stress distributions below the fatigue strength of Ti-6Al-4V (410 MPa) for this loading scenario when employed in the osteopenic and osteoporotic humeri [4]. The 80% porosity stem had a single strut exceeding the fatigue strength when employed in the healthy bone. The results of this study indicate that the more compliant nature of the porous stem geometries may allow for better load transmission through the proximal humeral bone, better matching the stress distributions of the intact bone and possibly mitigating stress-shielding effects. Importantly, this study also indicates that these porous stems have adequate strength for long-term use, as none were predicted to have catastrophic failure under the physiologically-relevant loads. Although these results are limited to a single boney geometry, it is based on the average shape of 75 shoulders and different bone densities are considered. Future work could leverage the shape model for probabilistic models that could explore the effect of stem porosity across a broader population. The development of these models are instrumental in determining if these structures are a viable solution to combatting orthopaedic implant infections


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 17 - 17
2 Jan 2024
Wildemann B
Full Access

The Global Burden of Disease Study 2019 showed a 33.4% increase in fractures and a 65.3% increase in Years lived with disability (YLD) since 1990. Although the overall rate of fracture related infection (FRI) is low, it increases to 30% in complex fractures. In addition, the implantation of foreign materials, such as fracture stabilizing implants, decreases the number of bacteria needed to cause an infection. Then, when infections do occur, they are difficult to treat and often require multiple surgeries to heal. The bacteria can persist in the canaliculi of the bony tissue, in cells, in a biofilm on material or necrotic bone or in abscess communities. In the last decades, different approaches have been pursued to modify biomaterials as well as implant surface and to develop antimicrobial surfaces or local drug release strategies. This talk will give an introduction to the problem of bony and implant associated infections and presents the development and preclinical (as well as clinical) studies of two approaches for local drug delivery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 30 - 30
10 Feb 2023
Gupta A Launay M Maharaj J Salhi A Hollman F Tok A Gilliland L Pather S Cutbush K
Full Access

Complications such as implant loosening, infection, periprosthetic fracture or instability may lead to revision arthroplasty procedures. There is limited literature comparing single-stage and two-stage revision shoulder arthroplasty. This study aims to compare clinical outcomes and cost benefit between single-stage and two-stage revision procedures. Thirty-one revision procedures (mean age 72+/-7, 15 males and 16 females) performed between 2016 and 2021 were included (27 revision RSA, 2 revision TSA, 2 failed ORIFs). Two-stage procedures were carried out 4-6 weeks apart. Single-stage procedures included debridement, implant removal and washout, followed by re-prep, re-drape and reconstruction with new instrumentations. Clinical parameters including length of stay, VAS, patient satisfaction was recorded preoperatively and at mean 12-months follow up. Cost benefit analysis were performed. Seven revisions were two-stage procedures and 24 were single-stage procedures. There were 5 infections in the two-stage group vs 14 in the single-stage group. We noted two cases of unstable RSA and 8 other causes for single-stage revision. Majority of the revisions were complex procedures requiring significant glenoid and/or humeral allografts and tendon transfers to compensate for soft tissue loss. No custom implants were used in our series. Hospital stay was reduced from 41+/-29 days for 2-stage procedures to 16+/-13 days for single-stage (p<0.05). VAS improved from 9+/-1 to 2+/-4 for two-stage procedures and from 5+/-3 to 1+/-2 for single-stages. The average total cost of hospital and patient was reduced by two-thirds. Patient satisfaction in the single-stage group was 43% which was comparable to the two-stage group. All infections were successfully treated with no recurrence of infection in our cohort of 31 patients. There was no instability postoperatively. 3 patients had postoperative neural symptoms which resolved within 6 months. Single-stage procedures for revision shoulder arthroplasty significantly decrease hospital stay, improve patients’ satisfaction, and reduced surgical costs