Platelet-rich plasma (PRP) has been demonstrated to benefit a variety of disciplines. But there exists heterogeneity in results obtained due to lack of standardization of the preparation protocols employed in them. We aim to identify and standardize a preparation protocol for PRP with maximum recovery of platelets to obtain reproducible results across studies. Blood samples were collected from 20 healthy volunteers. The double spin protocol of PRP preparation was analyzed for variables such as centrifugal acceleration, time, and volume of blood processed and final product utilized. The final PRP prepared was investigated for platelet recovery, concentration, integrity, and viability. We noted maximum platelet recovery (86-99%) with a mean concentration factor of 6-times baseline, with double centrifugation protocol at 100xg and 1600xg for 20 minutes each. We also noted that 10 ml of blood in a 15 ml tube was the
Merriam Webster - ide•al adjective \ī-′dē(−ə)l, ′ī\: exactly right for a particular purpose, situation, or person. Dictionary.com. - 1: conceived as constituting a standard of perfection or excellence; 2: regarded as perfect of its kind; 3: existing only in the imagination; not real or actual. Concepts: Tissue Preserving - anterior and posterior capsule maintained: YES; No dislocation; Minimal leg manipulation; Rapid Rehabilitation: YES; Half the average LOS at NE Baptist; Safe: YES; Fewer complications than standard approach; Transferable and Reproducible ???; Limited adoption; Optimally executed with navigation; Leg length assessment less accessible; Neck cut measured from GT; “Funny looking” impactors/reamers - different “feel”.
Introduction and Aims: C1 lateral mass screw fixation offers a powerful alternative biomechanical fixaion for upper cervical disorders. The anatomical constraints to this fixation have not been described yet and are essential to ensure avoidance of neurovascular damage. Method: Fifty patients (including five patients with rheumatoid arthritis) underwent upper cervical CT scans. Analysis of these CT scans involved use of calibrated scan measurements to identify the midpoint of the posterior lateral mass, the dimensions of the lateral mass, the direction of optimum screw passage, the position of the vertebral foramen at C1 and the
Introduction: C1 lateral mass screw fixation offers a powerful alternative biomechanical fixation for upper cervical disorders. The anatomical constraints to this fixation have not been described yet and are essential to ensure avoidance of neurovascular damage. Methods: 50 patients (including 5 patients with rheumatoid arthritis) underwent upper cervical CT scans. Analysis of these CT scans involved use of calibrated scan measurements to identify the midpoint of the posterior lateral mass, the dimensions of the lateral mass, the direction of optimum screw passage, the position of the vertebral foramen at C1 and the
Purpose: The purpose of this study was to examine how the “ideal” tibial nail insertion point varies with tibial rotation and to determine what radiographic landmarks can be used to identify the most suitable rotational view for insertion of a tibial intramedullary nail. Methods: Twelve cadaveric lower limb specimens with intact soft tissues around the knee and ankle joints were used. A 2.0mm Kirschner wire was placed in the center of the anatomic safe zone and centered on the tibial shaft. The leg was rotated and imaged using a fluoroscopic C-arm until the K-wire was positioned just medial to the lateral tibial spine (defined as the neutral anteroposterior radiograph). The leg was then fixed and radiographs were taken in 5 degree increments by rotating the fluoroscope internally and externally (in total, a 50 degree arc). Following this a second K-wire was placed in 5 mm increments both medially and laterally and the fluoroscope rotated until this second K-wire was positioned just medial to the lateral tibial spine. Radiographs were digitized for measurements. Results: Given the presence of a 30 degree rotational arc through which the radiograph appeared anteroposterior, it was possible to improperly translate the start point up to 15 mm. Relative external rotation of the image used for nail placement led to a medial insertion site when using the lateral tibial spine as the landmark. A line drawn at the lateral edge of the tibial plateau to bisect the fibula head correlated with an entry point that was central or up to 5 mm lateral to the
Introduction. Accurate alignment of components in total knee arthroplasty (TKA) is a known factor that contributes to improvement of post-operative kinematics and survivorship of the prosthetic joint. Recently, CAOS has been introduced into TKA in effort to reduce positioning variability that may deviate from the mechanical axis. However, literature suggests that clinical outcomes following TKA with CAOS may not present a significant improvement from traditional methods of implantation. This would infer that achieving correct alignment, alone, might be insufficient for ensuring an optimal reconstruction of the joint. Therefore, this study seeks to evaluate the importance of soft-tissue balancing, through the quantification of joint kinetics collected with intraoperative sensors, with or without the combined use of CAOS. Methods. Seven centers have contributed 215 patients who have undergone primary TKA with the use of intraoperative sensors. Of the 7 surgeons contributing patients to this study, 3 utilize CAOS; 4 utilize manual techniques. Along with standard demographic and surgical data being collected as per the multicenter study protocol, soft-tissue release techniques and medial-lateral intercompartmental loads—as indicated by the intraoperative sensors—were also captured pre- and post-release. “Optimal” balance was defined as a medial-lateral load difference of ≤ 15 lbs. A chi-squared analysis was performed to determine if the percentage of soft-tissue release was significantly different between the two groups: patients with CAOS, and patients without CAOS. Results. Of the 215 patients (35% with CAOS, 65% without CAOS) who have received TKA, using intraoperative sensors to assess mediolateral balance, 92.6% underwent soft-tissue release. Stratifying this data by surgical technique: 89% of the patients with CAOS, and 94% of patients without CAOS, were released. A chi-squared analysis—with 3 degrees of freedom; and 99% confidence—was executed to determine if the 5% difference between the two groups was significant. The analysis showed that there was no significant difference between the two groups, thus we can conclude that soft-tissue release is as equally necessary in the CAOS TKA group, as it is in the traditional TKA group. Discussion. It is widely accepted that correct alignment of TKA components contributes to improved kinematic function of the affected joint. Recently, technology has been developed to digitally guide surgeons through bony cuts, thereby decreasing the incidence of deviation from the mechanical axis. However, alignment may not be the foremost contributing factor in ensuring an optimal joint state. In this evaluation, 92.6% of the cohort required some degree of releasing of ligamentous structures surrounding the knee joint, regardless of intraoperative technique used. A chi-squared analysis of the data supports the claim that soft-tissue release is used in nearly all cases, irrespective of the use of CAOS (p < 0.001). This suggests that soft-tissue release is necessary in nearly all cases, even after appropriate alignment has been digitally verified. The data strongly supports the idea that obtaining an optimally functioning joint is multifactorial, and that alignment may play a more minor role in achieving
Economic data, clinical outcome studies, and anatomical studies continue to support the Superior Hip Approach as a preferred approach for improved safety, maximal tissue preservation, rapid recovery, and minimised cost. Clinical studies show exceedingly low rates of all major complications including femur fracture, dislocation, and nerve injury. Economic data from Q1 2013 to Q2 2016 demonstrate that CMS-insured patients treated by the Superior Hip Approach have the lowest cost of all patients treated in Massachusetts by an average of more than $7,000 over 90 days. The data show that the patients treated by the Superior Hip Approach have lower cost than any other surgical technique. Matched-pair bioskills dissections demonstrate far better preservation of the hip joint capsule and short external rotators than the anterior approach. Design principles include: Preservation of the abductors; Preservation of the posterior capsule and short external rotators; Preparation of the femur in situ prior to femoral neck osteotomy; Excision of the femoral head, thereby avoiding surgical dislocation of the hip; In-line access to the femoral shaft axis; Ability to perform a trial reduction; Independence from intra-operative imaging; Independence from a traction table; Applicable to at least 99% of THA procedures. In contrast to the results of the Superior Approach, the anterior approach continues to show difficulties with wound problems, infection, intra- and post-operative fracture, and failure of femoral component osseointegration and even dislocation. Evidence continues to demonstrate that the Superior Hip Approach has advantages over all other surgical approaches to the hip.Conclusion
Cartilage is a realistic target for tissue engineering given the avascular nature and cellular composition of the tissue. Much of the work in this field has been largely empirical, indicating the need for alternative approaches to the design of cartilage formation protocols. Given the heterogeneity associated with human mesenchymal populations, continuous cell lines may offer an alternative to model and simplify cartilage generation protocols. We therefore exploited the potential of the murine chondrocytic ATDC5 cell line to, i) delineate the process of chondrocyte differentiation in monolayer culture and three-dimensional micromass pellet culture systems, and ii) model cartilage formation utilising appropriate scaffold and bioreactor (perfused and rotating) technologies. Monolayer cultures of ATDC5 cells over a 28-day period in presence of insulin demonstrated various stages of chondrocyte differentiation- proliferative, pre-hypertrophic, hypertrophic and finally, mineralisation of cartilaginous nodules. This was confirmed by gene and protein expression, by qPCR and Western blotting respectively, of chondrogenic differentiation markers- Sox-9, Bcl-2, Type II and X collagens. Pellet cultures of ATDC5 cells under chondrogenic conditions (10 ng/ml TGF-beta3, 1X ITS {insulin, transferrin, selenium}, 10 nanomolar dexamethasone, 100 micromolar ascorbate-2-phosphate) illustrated a gradual progression from an aggregation of cells at day 7, to initiation of matrix synthesis at day 14, followed by formation of well-defined cartilaginous structures at day 21. Chondrogenic differentiation at day 21 was evident by numerous proliferative/ pre-hypertrophic chondrocytes, staining for Sox-9, Aggrecan, Type II collagen and PCNA, lodged in distinct lacunae embedded in cartilaginous matrix of proteogly-cans and Type II collagen. Inclusion of TGF-beta3 in the chondrogenic medium during pellet culture beyond 21 days maintained the pre-hypertrophic phenotype, even at day 28. In contrast, removal of TGF-beta3, addition of 50 nanomolar thyroxine and reduction of dexa-methasone to 1 nanomolar in the chondrogenic medium stimulated hypertrophy at day 28, evident by down-regulation of Sox-9 expression. ATDC5 cells cultured on Polyglycolic acid fleece in the rotating bioreactor or encapsulated in chitosan /alginate and cultured in the perfused bioreactor for 21 days, formed cartilaginous explants reminiscent of hyaline cartilage. Thus, ATDC5 cells constitute an
The Exeter Trauma Stem (ETS) is a monoblock unipolar prosthesis currently in use throughout various orthopaedic departments. It can be a useful procedure for specialty trainees in developing modern cementation techniques in hip arthroplasty. We propose that in order for this procedure to be a valid training tool that, as well as having a standardized surgical approach and operative technique, outcomes should be easily assessed and should be similar if performed by either a trainee or consultant. All ETS procedures carried out at our institution from January 2009 until September 2011 were reviewed retrospectively. Patient demographics and operative details were recorded from patient notes. Radiographic evaluation involved the Barrack cementation grading system, Dorr's criteria, stem alignment and leg length measurement. There was no significant difference in operative time between ETS performed by consultant or by specialty trainee. On postoperative x-ray, cement mantles were Barrack grade A or B in 55.6% (trainees) versus 61.9% (consultants). Stem alignment was neutral in 50% and varus in 50% of cases for trainees, versus 28.6% and 71.4% of cases for consultants. In total, 69.2 % of patients had lengthening of the operated limb with a mean increase of 10.4mm (2–25) for trainees and 9.3mm (2–18) for consultants. Both trainees and consultants can attain a good cement mantle. However, from our results stem alignment is less accurate by trainees with half being placed in varus. Our results highlight the difficulty of obtaining correct leg length positioning with the ETS with trainees and consultants having similar discrepancies. The ETS is a useful procedure for orthopaedic trainees to attain adequate skills in modern cementation techniques with similar post-operative radiographic outcomes to consultants. The tendency for trainees to be less accurate with stem positioning could be improved with supervision or careful pre-operative templating.
Several design principles were considered paramount when the surgical technique of performing total hip arthroplasty through an incision in the superior capsule without dislocation of the hip joint was developed. These design principles include: Preservation of the abductors; Preservation of the posterior capsule and short external rotators; Preparation of the femur in situ without dislocation of the hip; In-line access to the femoral shaft axis; Ability to perform a trial reduction; Independence from intraoperative imaging; Independence from a traction table; Applicable to at least 99% of THA procedures Personal experience with more than 1950 THA using the superior capsulotomy technique over a 12-year period has demonstrated several observations: Dislocation rate of 0.15% (3 in 1950); Acute deep infection rate of 0% (0 in 1950); Universal applicability: used in 99.7% of primary THA; Lateral femoral cutaneous nerve palsy incidence: 0/1950; Femoral nerve palsy incidence: 0/1950; Transient peroneal palsy incidence: 2/1950; Length of stay (since 2010): 1.55 days; Discharge to home: 98%; 90-day cost (2/13 to 2/14) compared to other exposures in CMS patients in the same institution: $24,200 vs $30,100; Readmission costs (CMS 2/13 to 2/14) at 90 days: $0. Conclusion: Performing total hip arthroplasty without dislocation and with preservation of the abductors, posterior capsule and short external rotations has proven to have a low dislocation rate, a low infection rate, and wide applicability. CMS 12-month expenditure data documenting ZERO dollars spent on readmission for any reason within 90 days of surgery demonstrates the potential for simultaneously improving incomes and reducing cost, with particular benefit within the CMS BPCI and private bundled payment programs.
The aim of our study was to assess the use of the Clavicular Hook Plate in treating acromio–clavicular joint dislocations and fractures of the distal clavicle. The prospective study was carried out at two hospitals- a teaching hospital and a district general hospital. Between 2001 and 2004 a total of 37 patients with AC joint injuries and distal clavicle fractures were treated surgically with this device. Four of the patients had sustained a Neers Type 2 fracture of the distal clavicle, while 33 patients had acromio-clavicular joint dislocation (Rockwood Type 3 or higher). Mean age of the study group was 35.2 years. Post operatively, shoulder pendulum exercises were commenced on the second day and all patients discharged within 48 hours. During the first few weeks, we restricted shoulder abduction to 90 degrees. At the first postoperative follow up appointment at 2 weeks, average shoulder abduction was 30 degrees and forward elevation −40 degrees. This improved at 6 weeks to 85 degrees and 105 degrees respectively. The plates were removed at an average time interval of 11 weeks for the ACJ dislocations (range 8–12 weeks) and 15 weeks for the clavicle fractures (range 12–16 weeks). At three months after plate removal, we evaluated patients to measure the Visual Analogue Score(VAS) and Constant Score. The mean VAS was 1.4 (range 0–6) and the mean Constant score was 92 (range 72 to 98). Wound healing problems occurred in two patients, while two had a stress riser clavicle fracture. These had to be subsequently fixed with a Dynamic Compression Plate. One patient developed a superficial wound infection. Seven patients had problems due to impingement between the hook and the under surface of the acromion. A 45 year old female patient developed ACJ instability after plate removal. Radiographs revealed widening of the AC joint and some osteophyte formation. She went on to develop frozen shoulder which was treated with intensive physiotherapy. The AO hook plate represents an improvement over previous implants in treating injuries around the AC Joint. However, the need for a second operation to remove the plate remains a significant problem. Complications resulting from impingement were common in our patients and represent a major drawback of this implant.
With Lord Darzi’s vision of the future of the NHS, it has become clear that quality of care will be the next focus and the hospitals providing acute orthopaedics and trauma services will have to deliver best and most efficient care for the patients being admitted with fractured neck of femur. This study is aimed at recognizing the changes and organization required at a district general hospital and their initial effect on the quality of services being provided locally. Management of patient with hip fracture involves several specialties within the hospital as well as primary care setup. An audit of A&
E waiting time showed significant variation in the delay before transferring the patients to the ward which was addressed by Fast-Track system. In the ward, preoperative assessment was standardized by agreement between orthopaedics and anaesthetics department. Three daytime lists were initiated specifically for hip fracture patients, resulting in increase in the number of patients going to theatre within 48 hours of admission, from 75% to 86%. A protocol was agreed between orthopaedic surgeons and rheumatologists for starting anti-resorptive therapy for these patients in order to decrease the chances of future fragility fractures. Impact of this measure will be assessed in due course. One senior middle grade surgeon was given the charge of managing NOF lists and to coordinate the medical management of these patients. Hospital has also started taking part in National Hip Fracture Database and a HCA has been assigned the duty of uploading the data to NHFD database. A acre pathway is being developed to streamline the whole peri-operative and after discharge management of these patients. With just about a year left before the implementation of healthcare commissioning, it is vital that trusts start working on best and most efficient care for all patients. Hospital will have to publish their quality accounts from next year and their tariffs will be linked to patient reported outcome measures. This study highlights the main issues and the potentially vital role of orthopaedic specialists in developing the required services.
The disadvantages: Leg length and neck version cannot be altered. Hip resurfacing is, technically, a demanding procedure. Contraindications: osteoporosis, varus neck.
Soft tissue sarcomas (STS) have not demonstrated favourable clinical responses to emerging immunotherapies such as checkpoint inhibitors. Studies in carcinomas and melanoma have demonstrated that tumours lacking T-cell infiltrates are associated with poor responses to immunotherapies. It is postulated that STS lack tumour asscoiated lymphocytes which renders these tumours insensitive to checkpoint inhibitors. Our objective was to develop a novel syngeneic mouse model of STS and characterize the immune phenotype of these tumours. Additionally, we sought to evaluate the therapeutic responses of these sarcomas to checkpoint inhibitors and a Type I interferon agonist. K-ras mutagenesis and p53 deletion was induced using a Lenti-Cre-recombinase injection into the hindlimb of 3 week old C57BL/6 mice. Tumours were harvested and characterized using standard histopathology techniques and whole trascriptome sequencing (RNAseq). Full body necrospy and histopathology was performed to identify metastases. Flow cytometry and immunohistochemistry was used to evaluate tumour immune phenotypes. Tumours were implanted into syngeneic C57BL/6 mice and the therapeutic responses to anti-CTLA4, anti-PD1 and DMXAA (Type I interferon agonist) were performed. Tumour responses were evaluated using bioluminescent imaging and caliper measurements. Soft tissue sarcomas developed in mice within 2–3 months of Lenti-Cre injection with 90% penetrance. Histologic analyses of tumours was consistent with a high-grade myogenic sarcoma characterized by smooth muscle actin, Desmin and Myogenin D positive immunostaining. Using crossplatform normalization protocols, geneexpression signatures of the mouse tumours most closely correlated with human undifferentiated pleomorphic sarcoma (UPS). Collectively, gene expression signatures of this murine sarcoma correlated with all muscle-derived human sarcomas (ERMS, ARMS, Synovial sarcoma, UPS). No lung or other visceral metastases were observed in all mice who developed spontaneous tumours. Immune phenotyping demonstrated a paucity of tumour-infiltrating lymphocytes (TILs, (TAMs). 50% of identified TILs in these murine sarcomas expressed PD-1, yet tumours were not responsive to anti-PD1 therapy or anti-CTLA4 therapy. A single intra tumoural (i.t.) injection of the Type I interferon agonist, DMXAA resulted in 80–90% tumour necrosis 72 hrs post-injection, decreased tumour viability up to 2 weeks post-injection and a marked infiltration of CD8+ T-cells and anitgen presenting dendritic cells and macrophages. Additional longitudinal experiments demonstrate a sustained and progressive anti-tumour effect in 83% (5/6) mice up to 6weeks following a single i.t. injection of DMXAA. All control treated mice (6/6) reached humane endpoint within 14 days. At 3 months post-DMXAA treatment, 4/6 mice were free of disease. We re-injected UPS tumours into these mice and tumours did not grow, suggesting abscopal effects after DMXAA treatment of primary tumours. We have characterized a new orthotopic and syngeneic mouse model of a myogenic soft tissue sarcoma. Like most human STS sub-types, these tumours have an immune inert tumour microenvironment and are not sensitive to checkpoint inhibitors. This model, syngeneic to C56BL/6 mice will enable future opportunities to investigate how various branches of the immune system can be targetted or manipulated to unearth new immunotherapeutic strategies for sarcoma. Using this model we have demonstrated that a single, intra-tumoural injection of a Type I interferon agonist can result in anti-tumour effects, recruit cytotoxic lymphocytes and antigen presenting cells with into the the tumour microenvironment. Abscopal tumour rejection after DMXAA treatement suggest adaptive T-cell responses against UPS are active in this model. Future work is needed to determine if upregulation of Type I inferferon pathways can be used as a therapeutic strategy for sarcoma or as a sensitization strategy for checkpoint inhibitors.
The posterior condylar axis of the distal femur is the common reference used to describe femoral anteversion. In the context of Total Hip Arthroplasty (THA), this reference can be used to define the native femoral anteversion, as well as the anteversion of the stem. However, these measurements are fixed to a femoral reference. The authors propose that the functional position of the proximal femur must be considered, as well as the functional relationship between stem and cup (combined anteversion) when considering the clinical implications of stem anteversion. This study investigates the post-operative differences between anatomically-referenced and functionally-referenced stem and combined anteversion in the supine and standing positions. 18 patients undergoing pre-operative analysis with the Trinity OPS® planning (Optimized Ortho, Sydney Australia, a division of Corin, UK) were recruited for post-operative assessment. Anatomic and functional stem anteversion in both the supine and standing positions were determined. The anatomic anteversion was measured from CT and referenced to the posterior condyles. The supine functional anteversion was measured from CT and referenced to the coronal plane. The standing functional anteversion was measured to the coronal plane when standing by performing a 3D/2D registration of the implants to a weight-bearing AP X-ray. Further, functional acetabular anteversion was captured to determine combined functional anteversion in the supine and standing positions.Introduction
Method
Fissures in the anulus fibrosus are common in disc degeneration, and are associated with discogenic pain. We hypothesise that anulus fissures are conducive to the ingrowth of blood vessels and nerves. To investigate the mechanical and chemical micro-environment of anulus fissures.Background
Purpose
The goal of tibial tray placement in total knee arthroplasty (TKA) is to maximize tibial surface coverage while maintaining proper rotation. Maximizing tibial surface coverage without component overhang reduces the risk of tibial subsidence. Proper tibial rotation avoids excess risk of patellar maltracking, knee instability, inappropriate tibial loading, and ligament imbalance. Different tibial tray designs offer varying potential in optimizing the relationship between tibial surface coverage and rotation. Patient specific instrumentation (PSI) generates customized guides from an MRI- or CT-based preoperative plan for use in TKA. The purpose of the present study was to utilize MRI information, obtained as part of the PSI planning process, to determine, for anatomic, symmetric, and asymmetric tibial tray designs, (1) which tibial tray design achieves maximum coverage, (2) the impact of maximizing coverage on rotation, and (3) the impact of establishing neutral rotation on coverage. In this prospective comparative study, MR images for 100 consecutive patients were uploaded into Materialise™ PSI software that was used to evaluate characteristics of tibial component placement. Tibial component rotation and surface coverage was analyzed using the preoperative planning software. Anatomic (Persona™), symmetric (NexGen™), and asymmetric (Natural-Knee II™) designs from a single manufacturer (Zimmer™) were evaluated to assess the relationship of tibial coverage and tibial rotation. Tibial surface coverage, defined as the proportion of tibial surface area covered by a given implant, was measured using Adobe Photoshop™ software (Figure 1). Rotation was calculated with respect to the tibial AP axis, which was defined as the line connecting the medial third of the tibial tuberosity and the PCL insertion.Introduction
Methods