Objectives. The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy. Methods. Using tenocytes from normal Sprague-Dawley rats, cultured both in control and
More and more evidences showed that cartilage harbored local progenitor cells that could differentiate toward osteoblast, chondrocyte, and adipocyte. However, our previous results showed that osteoarthritis derived chondroprogenitor cells (OA-CPC) exhibited strong osteogenic potential even in chondrogenic condition. How to promote their chondrogenic potential is the key for cartilage repair and regeneration in osteoarthritis. Recently, lipid availability was proved to determine skeletal progenitor fate. Therefore, we aim to determine whether lipid inhibition under 3D culture condition could enhance OA-CPC chondrogenesis. Moreover, glucose concentration was also evaluated for chondrogenic capacity. Although there are many researches showed that lower glucose promotes chondrogenesis, in our results, we found that OA-CPC in high concentration of glucose (4.5g/L) with lipid inhibitor (GW1100) showed strongest chondrogenic potential, which could form largest cell pellet with strong proteoglycan staining, COL II expression and no COL I expression. Besides, COL2A1 was increased and COL10A1 was decreased significantly by GW1100 under
Aims. The purpose of this study was to evaluate the in vitro effects of apocynin, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase (NOX) and a downregulator of intracellular reactive oxygen species (ROS), on high glucose-induced oxidative stress on tenocytes. Methods. Tenocytes from normal Sprague-Dawley rats were cultured in both control and high-glucose conditions. Apocynin was added at cell seeding, dividing the tenocytes into four groups: the control group; regular glucose with apocynin (RG apo+);
Aims. The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development. Methods. Diabetic models of mice, RAW 264.7 cells, and bone marrow macrophages (BMMs) were established by streptozotocin stimulation,
Metabolic disorders are frequently associated with tendon degeneration and impaired healing after acute injury. However, the underlying cellular and molecular mechanisms remain largely unclear. We have previously shown that human and rat tendon cells responde to glucose stimulation in vitro by secretion of insulin. Therefore, we now hypothesize that nutritional glucose uptake affects tendon healing in a rat model. In female rats (n=30/group), unilateral full-thickness Achilles tendon defects were created. Immediately after surgery animals were either fed a glucose rich- or a control diet for up to 4 weeks. Gait analysis (Catwalk, Noldus) was performed at three time points. In addition, tendon thickness measurements, biomechanical testing and immunohistochemical analysis were conducted. Subsequently, gene expression analysis, comparing cDNA pools (n=5) prepared from repair tissues of both groups was performed. The repair tissues of the
Introduction and Objective. Traditionally, osteoarthritis (OA) has been associated mostly with degradation of cartilage only. More recently, it has been established that other joint tissues, in particular bone, are also centrally involved. However, the link between these two tissues remains unclear. This relationship is particularly evident in post-traumatic OA (PTOA), where bone marrow lesions (BMLs), as well as fluctuating levels of inflammation, are present long before cartilage degradation begins. The process of bone-cartilage crosstalk has been challenging to study due to its multi-tissue complexity. Thus, the use of explant model systems have been crucial in advancing our knowledge. Thus, we developed a novel patellar explant model, to study bone cartilage crosstalk, in particular related to subchondral bone damage, as an alternative to traditional femoral head explants or cylindrical core specimens. The commonly used osteochondral explant models are limited, for our application, since they involve bone damage during harvest. The specifics aim of this study was to validate this novel patellar explant model by using IL-1B to stimulate the inflammatory response and mechanical stimulation to determine the subsequent developments of PTOA. Materials and Methods. Lewis rats (n=48) were used to obtain patellar and femoral head explants which were harvested under an institutional ethical approval license. Explants were maintained in
Introduction. Metabolic disorders are among known risk factors for tendinopathies or spontaneous tendon ruptures. However, the underlying cellular and molecular mechanisms remain unclear. We have previously shown that human and rat tendon cells produce and secrete insulin upon glucose stimulation. Therefore, we hypothesize that nutritional glucose uptake affects tendon healing in a rat model. Materials and Methods. Unilateral full-thickness Achilles tendon defects were created in 60 female rats. Animals were randomly assigned to three groups receiving different diets for 2 weeks (high glucose diet, low
Osteoarthritis (OA) is a disease that affects both bone and cartilage. Typically, this disease leads to cartilage degradation and subchondral bone sclerosis but the link between the two is unknown. Also, while OA was traditionally thought of as non-inflammatory condition, it now seems that low levels of inflammation may be involved in the link between these responses. This is particularly relevant in the case of Post-Traumatic OA (PTOA), where an initial phase of synovial inflammation occurs after injury. The inflammatory mediator interleukin 1 beta (IL-1B) is central to this response and contributes to cartilage degradation. However, whether there is a secondary effect of this mediator on subchondral bone, via bone-cartilage crosstalk, is not known. To address this question, we developed a novel patellar explant model, to study bone cartilage crosstalk which may be more suitable than commonly used femoral head explants. The specific aim of this study was to validate this novel patellar explant model by using IL-1B to stimulate the inflammatory response after joint injury and the subsequent development of PTOA. Female Sprague Dawley rats (n=48) were used to obtain patellar explants, under an institutional ethical approval license. Patellae were maintained in
Purpose: Several studies have been directed toward using mesenchymal stem cells (MSCs) from osteoarthritic (OA) patients for cartilage or disc repair because these patients are the ones that will require a source of autologous stem cells if biological repair of tissue lesions is to be a therapeutic option. A major drawback of current cartilage and intervertebral disc tissue engineering repair is that these cells rapidly express type X collagen, a marker of late stage chondrocyte hyperthrophy implicated in endochondral ossification. However, a novel plasma-polymerized thin film material, named nitrogen-rich plasma-polymerized ethylene (PPE:N), is able to inhibit type X collagen expression in committed MSCs. The specific aim of this study was to determine if the suppression of type X collagen by PPE:N is maintained when MSCs are transferred to pellet cultures in chondrogenic defined media. Method: MSCs were obtained from aspirates from the intramedullary canal of donors undergoing total hip replacement for OA using a protocol approved by the Research Ethics Committee of our institution. Cells were then expanded for 2–3 passages in DMEM
Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application. In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.Aims
Methods
Introduction: Osteonecrosis (ON) is a disabling disease, which often affects young adults after corticosteroid immunosuppression for organ transplantation. Reducing risk factors remains the only preventive measure for this condition. Our goal was to determine if diabetes has any influence in developing ON after kidney transplantation. Materials and Methods: We identified 2881 renal transplantation patients with the following inclusion criteria: age >
16 years, no history of corticosteroid exposure. There were 1762 (61%) diabetics and 1119 (39%) non-diabetics. Mean age was 43 years (range, 16 to 77) and mean follow-up was 128 months (range, 36 to 242). Osteonecrosis free survivorship was defined as time from transplant to diagnosis of ON. Results: Kaplan-Meier life table analysis at 5 years revealed that the incidence of ON was 4% for diabetics vs. 9% for non-diabetics (ON- free survivorship 96%, [95% confidence interval 0.952 to 0.970] vs. 91% [95% C.I. 0.896 to 0.929], respectively [p <
0.0001]). At 10 years, the ON incidence was 5% for diabetics vs. 10% for non-diabetics representing a 50% reduction. Diabetes was the strongest independently predictive factor for ON-free survival (relative risk 0.47, p<
0.0001), while other factors were also independently significant but had a weaker relationship; (rejection episodes [RR 1.17, p=0.009], year of transplantation [RR 0.96, p=0.01]). Discussion: Although the most common reason for renal transplantation, in adults, is diabetic nephropathy (61%), only a small fraction actually developed ON as compared to the non-diabetic population. The reason for this is unknown but might be related to lipid metabolism,
Osteoarthritis (OA) is a common degenerative joint disease worldwide, which is characterized by articular cartilage lesions. With more understanding of the disease, OA is considered to be a disorder of the whole joint. However, molecular communication within and between tissues during the disease process is still unclear. In this study, we used transcriptome data to reveal crosstalk between different tissues in OA. We used four groups of transcription profiles acquired from the Gene Expression Omnibus database, including articular cartilage, meniscus, synovium, and subchondral bone, to screen differentially expressed genes during OA. Potential crosstalk between tissues was depicted by ligand-receptor pairs.Aims
Methods
This study aimed to determine the expression and clinical significance of a cartilage protein, cartilage oligomeric matrix protein (COMP), in knee osteoarthritis (OA) patients. A total of 270 knee OA patients and 93 healthy controls were recruited. COMP messenger RNA (mRNA) and protein levels in serum, synovial fluid, synovial tissue, and fibroblast-like synoviocytes (FLSs) of knee OA patients were determined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry.Aims
Methods
Purpose: A major drawback of current cartilage and intervertebral disc tissue engineering is that human mesenchymal stem cells (MSCs) from osteoarthritis (OA) patients express type X collagen (COL10), a marker of late-stage chondrocyte hypertrophy (associated with endochondral ossification). Parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP) regulate endochondral ossification by inhibiting chondrocyte differentiation toward hypertrophy. In the present study, we investigated the effect of PTH on the expression of COL10 in MSCs from OA patients and analyzed the potential mechanisms related to its effect. Method: MSCs were obtained from aspirates from the intramedullary canal of donors (60–80 years of age) undergoing total hip replacement for OA. Cells were cultured for 2–3 passages in DMEM
Purpose. Disc degeneration is known to occur early in adult life, but at present there is no medical treatment to reverse or even retard the problem. Development of medical treatments is complicated by the lack of a validated long term organ culture model in which therapeutic candidates can be studied. The objective of this study was to optimize and validate an organ culture system for intact human intervertebral disc (IVD), which could be used subsequently to determine whether synthetic peptide growth factors can stimulate disc cell metabolism and initiate a repair response. Method. Seventy lumbar IVDs, from 14 individuals, were isolated within 24 h after death. Discs were prepared for organ culture by removing bony endplates but retaining cartilaginous endplates (CEP). Discs were cultured with no external load applied. The effects of glucose and FBS concentrations were evaluated. Dulbeccos Modified Eagle Media (DMEM) was supplemented with glucose, 4.5g/L or 1g/L, referred to as high and low (physiological) glucose, and FBS, 5% or 1%, referred to as high and low FBS, respectively. After a four week culture period, samples were taken across the disc using a 4 mm biopsy punch. Cell viability was analyzed using a live/dead fluorescence assay (Live/Dead, Invitrogen) and visualized by confocal microscopy. CEP discs were also placed in long term culture for four months, and cell viability was assessed. Western bolt analysis for the G1 domain of aggrecan was also performed to assess the effect of nutritional state on disc catabolism. Results. Cell viability in CEP isolated discs was evaluated after four weeks and four months of organ culture under high and physiological nutritional state. Previous studies have shown that
Purpose. A major drawback of current cartilage and intervertebral disc (IVD) tissue engineering is that human mesenchymal stem cells (MSCs) from osteoarthritic (OA) patients express high levels of type X collagen. Type X collagen is a marker of late stage chondrocyte hypertrophy, linked with endochondral ossification, which precedes bone formation. However, it has been shown that a novel plasma-polymer, called nitrogen-rich plasma-polymerized ethylene (PPE:N), is able to inhibit type X collagen expression in committed MSCs. The aim of this study was to determine if the decreased expression of type X collagen, induced by the PPE:N surfaces is maintained when MSCs are removed from the surface and transferred to pellet cultures in the presence of serum and growth factor free chondrogenic media. Method. Human MSCs were obtained from aspirates from the intramedullary canal of donors undergoing total hip replacement for OA. Cells were expanded for 2–3 passages and then cultured on polystyrene dishes and on two different PPE:N surfaces: high (H) and low (L) pressure deposition. Cells were transferred for 7 additional days in chondrogenic serum free media (DMEM
Purpose. Disc degeneration is known to occur early in adult life, but at present there is no medical treatment to reverse or even retard the problem. Development of medical treatments is complicated by the lack of a validated long term organ culture model in which therapeutic candidates can be studied. The objective of this study was to optimize and validate an organ culture system for intact human intervertebral disc (IVD), which could be used subsequently to determine whether synthetic peptide growth factors can stimulate disc cell metabolism and initiate a repair response. Method. Seventy lumbar IVDs, from 14 individuals, were isolated within 24 h after death. Discs were prepared for organ culture by removing bony endplates but retaining cartilaginous endplates (CEP). Discs were cultured with no external load applied. The effects of glucose and FBS concentrations were evaluated. Dulbeccos Modified Eagle Media (DMEM) was supplemented with glucose, 4.5g/L or 1g/L, referred to as high and low (physiological) glucose, and FBS, 5% or 1%, referred to as high and low FBS, respectively. After a four week culture period, samples were taken across the disc using a 4 mm biopsy punch. Cell viability was analyzed using a live/dead fluorescence assay (Live/Dead, Invitrogen) and visualized by confocal microscopy. CEP discs were also placed in long term culture for four months, and cell viability was assessed. Western bolt analysis for the G1 domain of aggrecan was also performed to assess the effect of nutritional state on disc catabolism. Results. Cell viability in CEP isolated discs was evaluated after four weeks and four months of organ culture under high and physiological nutritional state. Previous studies have shown that
Purpose: Mesenchymal stem cells (MSCs) from osteoarthritic (OA) patients are not well characterized and little is known of how they are regulated. Recent evidence indicates that a major drawback of current cartilage and intervertebral disc (IVD) tissue engineering is that human MSCs from OA patients express type X collagen (COL10), a marker of late-stage chondrocyte hypertrophy (associated with endochondral ossification). However, the intracellular pathways for transducing signals that regulate hypertrophy in MSCs remain unclear. In chondrocytes, this pathway is mediated by mitogen activated protein kinase (MAPK) p38. The aim of this study was to determine the phosphorylation levels of ERK/p38 MAPK signaling molecules in MSCs from OA patients compared to those from normal patients. Method: MSCs were obtained from aspirates from the intramedullary canal of donors (60–80 years of age) undergoing total hip replacement for OA. Cells were cultured in DMEM
Summary Statement. Umbilical cord derived stem cell secretion could enhance the osteogenic differentiation of human bone marrow stem cells. It may promote bone, cartilage and tendon regeneration in rat models, but the effect was not significant up to now. Introduction. Mesenchymal stem cells (MSCs) are multipotent cells that have extensive proliferative capacity. MSCs synthesise various exosomes, growth factors and cytokines. Stem cell secretions were made from serum free conditioned medium of stem cells collected from different human tissues, such as adipose tissue and dental pulp. Our hypothesis is umbilical cord stem cell secretion could promote multiple proliferation and differentiation of MSCs, also enhance the regeneration of musculoskeletal tissues. Methods. In vitro: Human bone marrow mesenchymal stem cells (hBMSCs) were cultured in
Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of The human osteoblast-like Saos-2 cells infected with Aims
Methods