Introduction. Low dose technology of an
The emergence of patient specific instrumentation has seen an expansion from simple radiographs to plan total knee arthroplasty (TKA) with modern systems using computed tomography (CT) or magnetic resonance imaging scans. Concerns have emerged regarding accuracy of these non-weight bearing modalities to assess true mechanical axis. The aim of our study was to compare coronal alignment on full length standing AP imaging generated by the
Aims. Leg length discrepancy (LLD) is a common pre- and postoperative issue in total hip arthroplasty (THA) patients. The conventional technique for measuring LLD has historically been on a non-weightbearing anteroposterior pelvic radiograph; however, this does not capture many potential sources of LLD. The aim of this study was to determine if long-limb
Background. The advent of
Background. Digital templating is a critical part of preoperative planning for total hip arthroplasty (THA) that is increasingly used by orthopaedic surgeons as part of their preoperative planning process. Digital templating has been used as a method of reducing hospital costs by eliminating the need for acetate films and providing an accurate method of preoperative planning. Pre-operative templating can help anticipate and predict appropriate component sizes to help avoid postoperative leg length discrepancy, failure to restore offset, femoral fracture, and instability. A preoperative plan using digital radiographs for surgical templating for component size can improve intraoperative accuracy and precision. While templating on conventional and digital radiographs is reliable and accurate, the accuracy of templating on digital images acquired with a novel biplanar imaging system (EOS Imaging Inc, Cambridge, MA, USA) remains unknown.
Background. Achieving optimal prosthesis alignment during total knee arthroplasty (TKA) is essential. Imageless computer-assisted surgery (CAS) is developed to improve knee prosthesis alignment and with CAS it is possible to perform intraoperative alignment measurements. Lower limb alignment measurements are also performed for preoperative planning and postoperative evaluation. A new stereoradiography system, called
Purpose of the study: Leg length discrepancy after THA is a common complication and source of recurrent complaints from patients. To date, no reliable and reproducible technique has come forward to enable accurate quantification of all radiological parameters of the lower limb. Nevertheless, preoperative planning for hip arthroplasty requires knowledge of many limb parameters, in particularly leg length discrepancy, femoral offset, or the head-neck angle. The most widely used method is to use the 2D radiographs. The
Introduction. The safe zone of the acetabular cup for THA was discussed based on the AP X-ray films of hip joints. A supine position is still used to determine the cup position for CAOS such as navigation systems. There were few data about the implant positions after THA in standing positions. The
Unlike conventional radiographic methods, the newly introduced
Introduction. Studies show that cup malpositioning using conventional techniques occurs in 50 to 74% of cases defined. Assessment of the utility of improved methods of placing acetabular components depends upon the accuracy of the method of measuring component positioning postoperatively. The current study reports on our preliminary experience assessing the accuracy of
Purpose of the study: The analysis of hip prostheses often remains limited to standard x-rays taken in the upright position or a CT scan taken in the supine position. The
The anterior pelvic plane (APP) angle is often used as a reference to decide pelvic alignment for hip surgeons. However, Rousseau criticised the validness of the APP angles because the APP angles in standing position measured on conventional standing X-ray films never showed correlation with the other pelvic alignment parameters, such as sacral slope (SS). We measured the APP angles, SS and pelvic tilt (PT) on the non-distorted anteroposterior (AP) and lateral digitally reconstructed radiography (DRR) images in supine position (with CT scans) and AP and lateral X-ray images in standing position (with
Introduction. Most of studies on Total Hip Arthroplasty (THA) are focused on acetabular cup orientation. Even though the literature suggests that femoral anteversion and combined anteversion have a clinical impact on THA stability, there are not many reports on these parameters. Combined anteversion can be considered morphologically as the addition of anatomical acetabular and femoral anteversions (Anatomical Combined Anatomical Anteversion ACA). It is also possible to evaluate the Combined Functional Anteversion (CFA) generated by the relative functional position of femoral and acetabular implants while standing. This preliminary study is focused on the comparison of the anatomical and functional data in asymptomatic THA patients. Material and methods. 50 asymptomatic unilateral THA patients (21 short stems and 29 standard stems) have been enrolled. All patients underwent an
Introduction. Optimal implant position is the important factor in the hip stability after THA. Both the acetabular and femoral implants are placed in anteversion. While most hip dislocations occur either in standing position or when the hip is flexed, preoperative hip anatomy and postoperative implants position are commonly measured in supine position with CT scan. The isolated and combined anteversions of femoral and acetabular components have been reported in the literature. The conclusions are questionable as the reference planes are not consistent: femoral anteversion is measured according to the distal femoral condyles plane (DFCP) and acetabulum orientation in the anterior pelvic plane (APP)). The
Introduction. Post op cup anatomical and functional orientation is a key point in THP patients regarding instability and wear. Recently literature has been focused on the consequences of the transition from standing to sitting regarding anteversion, frontal and sagittal inclination. Pelvic incidence (PI) is now considered as a key parameter for the analysis of sagittal balance and sacral slope (SS) orientation. It's influence on THP biomechanics has been suggested. Interestingly, the potential impact of this morphological angle on cup implantation during surgery and the side effects on post op functional orientation have not been studied. Our study explores this topic from a series of standing and sitting post-op
Introduction. Coronal misalignment of the lower limbs is closely related to the onset and progression of osteoarthritis. In cases of severe genu varus or valgus, evaluating this alignment can assist in choosing specific surgical strategies. Furthermore, restoring satisfactory alignment after total knee replacement promotes longevity of the implant and better functional results. Knee coronal alignment is typically evaluated with the Hip-Knee-Ankle (HKA) angle. It is generally measured on standing AP long-leg radiographs (LLR). However, patient positioning influences the accuracy of this 2D measurement. A new 3D method to measure coronal lower limb alignment using low-dose
Introduction: Degenerative osteoarticular conditions of the lower limb comprise of the most common orthopedic diseases requiring implants surgery. Biomechanical factors have an important role in the development of the degenerative process. Radiological diagnostics prominently rely on bidirectional 2D X-ray images, CT and MRI also being employed in the assessment process. However, these diagnostic tools usually cover a single joint, mostly unilaterally, rarely if ever providing a chance to simultaneously examine each members of the closed kinetic chain of both limbs under normal postural loads in a standing position. Classification and measurements of anatomical conditions are carried out in a 2D environment only and measured values are projected to real-life circumstances.
Introduction. The assessment of leg length is essential for planning the correction of deformities and for the compensation of length discrepancy, especially after hip or knee arthroplasty. CT scan measures the “anatomical” lengths but does not evaluate the “functional” length experienced by the patients in standing position. Functional length integrates frontal orientation, flexion or hyperextension.
Introduction. Pelvic flexion and extension in different body positions can affect acetabular orientation after total hip arthroplasty, and this may predispose patients to dislocation. The purpose of this study was to evaluate functional acetabular component position in total hip replacement patients during standing and sitting. We hypothesize that patients with degenerative lumbar disease will have less pelvic extension from standing to sitting, compared to patients with a normal lumbar spine or single level spine disease. Methods. A prospective cohort of 20 patients with primary unilateral THR underwent spine-to-ankle standing and sitting lateral radiographs that included the lumbar spine and pelvis using
Introduction. The gold standard for knee surgery is the restoration of the so-called «neutral mechanical alignment ». Recent literature as pointed out the patients with «constitutional varus »; in these cases, restoring neutral alignment could be abnormal and even undesirable. The same situation can be observed in patients with «constitutional valgus alignment ». To date, these outliers cases have only been explored focusing on the lower limb; the influence of the pelvic morphotype has not been studied. Intuitively, the pelvic width could be a significant factor. The