Abstract. Background and study aim. The UK National Joint Registry(NJR) has not reported total knee replacement (TKR)survivorship based on
Abstract. Introduction. The UK National Joint Registry(NJR) has not reported total knee replacement (TKR)survivorship based on
Introduction. The surgical treatment of critical-sized bone defects with complex three-dimensional (3D) geometries is a challenge for the treating surgeon. Additive manufacturing such as 3D printing enables the production of highly individualized bone implants meeting the shape of the patient's bone defect and including a tunable internal structure. In this study, we showcase the
Intramedullary nails (IMNs) are the current gold standard for treatment of long bone diaphyseal and selected metaphyseal fractures. Their
Aims. The risk of mechanical failure of modular revision hip stems is frequently mentioned in the literature, but little is currently known about the actual clinical failure rates of this type of prosthesis. The current retrospective long-term analysis examines the distal and modular failure patterns of the Prevision hip stem from 18 years of clinical use. A
Osteosarcoma is a highly malignant primary tumor of bone tissue. The 5-year survival rate of patients with metastasis is below 20% and this scenario is unchanged in the last two decades, despite great efforts in pre-clinical and clinical research. Traditional preclinical models of osteosarcoma do not consider the whole complexity of its microenvironment, leading to poor correlation between in vitro/in vivo results and clinical outcomes. Spheroids are a promising in vitro model to mimic osteosarcoma and perform drug-screening tests, as they (i) reproduce the microarchitecture of the tumor, (ii) are characterized by hypoxic regions and necrotic core as the in vivo tumor, (iii) and recapitulate the chemo-resistance phenomena. However, to date, the spheroid model is scarcely used in osteosarcoma research. Our aim is to develop a customized culture dish to grow and characterize spheroids and to perform advanced drug-screening tests. The resulting platform must be adapted to automated image acquisition systems, to overcome the drawbacks of commercial spheroids platforms. To this purpose, we
Introduction: When introducing new joint replacement designs, it is difficult to predict with any certainty the clinical performance of the new
Aims. The aims were to assess whether joint-specific outcome after total knee arthroplasty (TKA) was influenced by implant
Introduction. Mechanically assisted crevice corrosion (MACC) of head-neck modular taper junctions is prevalent in virtually all head neck tapers in use today. To date, no clear in vitro tests of
The anatomy of the femur shows a high inter-patient variability, making it challenging to
Aims. To explore key stakeholder views around feasibility and acceptability of trials seeking to prevent post-traumatic osteoarthritis (PTOA) following knee injury, and provide guidance for next steps in PTOA trial
Abstract. Objectives. Young patients receiving metallic bone implants after surgical resection of bone cancer require implants that last into adulthood, and ideally life-long. Porous implants with similar stiffness to bone can promote bone ingrowth and thus beneficial clinical outcomes. A mechanical remodelling stimulus, strain energy density (SED), is thought to be the primary control variable of the process of bone growth into porous implants. The sequential process of bone growth needs to be taken into account to develop an accurate and validated bone remodelling algorithm, which can be employed to improve porous implant
Total knee arthroplasty with a rotating hinge knee with carbon-fibre-reinforced (CFR)-PEEK as an alternative bushing material with enhanced creep, wear and fatigue behaviour has been clinically established [1-4]. The objective of our study was to compare results from in vitro biotribological characterisation to ex vivo findings on a retrievals. A modified in vitro wear simulation based on ISO 14243-1 was performed for 5 million cycles on rotating hinge knee (RHK) designs (EnduRo®) out of cobalt-chromium and ZrN-multilayer ceramic coating. The rotational & flexion axles-bushings and the flanges are made of CFR-PEEK with 30% polyacrylonitrile fibre content. Analysis of 12 retrieved EnduRo® RHK systems in cobalt-chromium and ZrN-multilayer in regard to loosening torques, microscopic surface analysis, distinction between different wear modes and classification with a modified HOOD-score has been performed. For the RHK
Numerous papers present in-vivo knee kinematics data following total knee arthroplasty (TKA) from fluoroscopic testing. Comparing data is challenging given the large number of factors that potentially affect the reported kinematics. This paper aims at understanding the effect of following three different factors: implant geometry, performed activity and analysis method. A total of 30 patients who underwent TKA were included in this study. This group was subdivided in three equal groups: each group receiving a different type of posterior stabilized total knee prosthesis. During single-plane fluoroscopic analysis, each patient performed three activities: open chain flexion extension, closed chain squatting and chair-rising. The 2D fluoroscopic data were subsequently converted to 3D implant positions and used to evaluate the tibiofemoral contact points and landmark-based kinematic parameters. Significantly different anteroposterior translations and internal-external rotations were observed between the considered implants. In the lateral compartment, these differences only appeared after post-cam engagement. Comparing the activities, a significant more posterior position was observed for both the medial and lateral compartment in the closed chain activities during mid-flexion. A strong and significant correlation was found between the contact-points and landmarks-based analyses method. However, large individual variations were also observed, yielding a difference of up to 25% in anteroposterior position between both methods. In conclusion, all three evaluated factors significantly affect the obtained tibiofemoral kinematics. The individual implant
Aims. This study aimed to identify the effect of anatomical tibial component (ATC)
Aims. Patient dissatisfaction is not uncommon following primary total knee arthroplasty. One proposed method to alleviate this is by improving knee kinematics. Therefore, we aimed to answer the following research question: are there significant differences in knee kinematics based on the
Vertebral metastases are the most common type of malignant lesions of the spine. Although this tumour is still considered incurable and standard treatments are mainly palliative, the standard approach consists in surgical resection, which results in the formation of bone gaps. Hence, scaffolds, cements and/or implants are needed to fill the bone lacunae. Here, we propose a novel approach to address spinal metastases recurrence, based on the use of anti-tumour metallic-based nanostructured coatings. Moreover, for the first time, a gradient microfluidic approach is proposed for the screening of nanostructured coatings having anti-tumoral effect, to determine the optimal concentration of the metallic compound that permits selective toxicity towards tumoral cells. Coatings are based on Zinc as anti-tumour agent, which had been never explored before for treatment of bone metastases. The customized gradient generating microfluidic chip was
Abstract. Objectives. Currently, total hip replacement surgery is an effective treatment for osteoarthritis, where the damaged hip joint is replaced with an artificial joint. Stress shielding is a mechanical phenomenon that refers to the reduction of bone density as a result of altered stresses acting on the host bone. Due to solid metallic nature and high stiffness of the current orthopaedic prostheses, surrounding bones undergo too much bone resorption secondary to stress shielding. With the use of 3D printing technology such as selective laser melting (SLM), it is now possible to produce porous graded microstructure hip stems to mimics the surrounding bone tissue properties. Method. In this study we have compared the physical and mechanical properties of two triply periodic minimal surface (TPMS) lattice structure namely gyroid and diamond TPMS. Based on initial investigations, it was decided to
Bone tissue engineering is a promising strategy to treat the huge number of bone fractures caused by progressive population ageing and diseases i.e., osteoporosis. The bioactive and biomimetic materials
Abstract. Background. The Oxford Domed Lateral (ODL) Unicompartmental Knee Replacement (UKR) has some advantages over other lateral UKRs, but the mobile bearing dislocation rate is high (1–6%). Medial dislocations, with the bearing lodged on the tibial component wall, are most common. Anterior/posterior dislocations are rare. For a dislocation to occur distraction of the joint is required. We have developed and validated a dislocation analysis tool based on a computer model of the ODL with a robotics path-planning algorithm to determine the Vertical Distraction required for a Dislocation (VDD), which is inversely related to the risk of dislocation. Objectives. To modify the ODL