Advertisement for orthosearch.org.uk
Results 1 - 20 of 76
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 2 - 2
1 Jul 2014
Gao B Angibaud L
Full Access

Summary Statement. The constraint behavior of total knee arthroplasty (TKA) prosthesis usually has to be physically tested. This study presents a computer simulation model using finite element analysis (FEA) and demonstrates its effectiveness in predicting the femorotibial constraint behavior of TKA implants. Introduction. TKA prostheses are semi-constrained artificial joints. A well-functioning TKA prosthesis should be designed with a good balance between stability and mobility, meaning the femorotibial constraint of the artificial joint cannot be excessive or too lax. To assess the constraint behavior of a TKA prosthesis, physical testing is usually required, and an industrial test standard has been developed for this purpose. Benefiting from technological advancement, computer simulation has become increasingly useful in many industries, including medical device research and development. FEA has been extensively used in stress analysis and structural evaluation of various orthopaedic implants. This study presented an FEA-based simulation to evaluate the femorotibial constraint behavior of TKA prosthesis, and demonstrated the effectiveness of the method by validating it through physical testing. Methods. A Cruciate Retaining (CR) TKA prosthesis design (Optetrak Logic CR, size 3, Exactech, FL, USA) was used in this study. The prosthesis system consists of a femoral component, a tibial insert, and a tibial baseplate. CAD models of the implants assembled at 0° of flexion were used for the simulation. Finite element models were generated using 10-node tetrahedral elements, with all materials considered linear elastic. Boundary conditions were set up according to the ASTM F1223 standard. The tibial baseplate was fixed distally. A constant compressive force (710 N) was applied on the femoral component. Nonlinear Surface-Surface-Contact was defined at the femorotibial articulating surfaces as well as between the tibial insert and tibial baseplate. A coefficient of friction of 0.2 determined from the physical test was input into the simulation. The femoral component was driven under a displacement-controlled scheme to slide along the anterior-posterior (AP) direction on the tibial insert. At each time step, constraint force occurring at the articulating surface was derived from the reaction force at the distal fixation of the tibial baseplate. The force-displacement curve was plotted by combining the results of all time steps to characterize the constraint behavior of the prosthesis. A nonlinear FEA solver (NX Nastran SOL601, Siemens, TX, USA) was used to solve the simulation. In addition, five samples of the prostheses were physically tested per ASTM F1223. Simulation results were compared to the physical testing. Results. The simulation successfully captured the movement of contact location and pressure along the movement of the femoral component. The force-displacement curve predicted by the simulation exhibited a very close hysteresis loop profile as the results of physical testing. Using the curve slope from 0 to 5 mm to characterise the constraint in the most relevant displacement range, the simulation predicted 45.7 N/mm anteriorly and 36.4 N/mm posteriorly, which are less than 10% different from the physical testing results (46.4 N/mm anteriorly and 39.6 N/mm posteriorly). Discussion/Conclusion. This study demonstrated that the simulation was able to closely predict the femorotibial constraint behavior of the TKA prosthesis under ASTM F1223 testing. The simulation results resembled the physical test results not only in the general profile of the curve but also in the magnitude of slope values. The increased difference at the far anterior region could be related to the fact that no material nonlinearity was considered in the current simulation, a factor that could be improved in future studies. A validated simulation method could be very useful in TKA prosthesis design. Since no physical prototypes are required, design evaluation and optimization can be achieved in a much easier and faster manner


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 25 - 25
1 May 2016
Baba Y Maruyama D Yamamoto K Nakagawa S Nakashima Y Nagayama N
Full Access

Introduction. Total knee arthroplasty (TKA) has achieved excellent clinical outcomes and functional performances. However, there is a need for greater implant longevity and higher flexion by younger and Asian patients. We determined the relationship between mobility and stability of TKA product because they are essential for much further functional upgrading. This research evaluated the geometry characteristics of femorotibial surfaces quantitatively by measuring their force of constraint by computer simulation and mechanical test. Methods. We measured the force of constraint of femorotibial surfaces in order to evaluate the property of femorotibial surfaces. A total knee system was used for this evaluation, and has an asymmetrical joint surface, which restores the anatomical jointline in both sagittal and coronal planes, and is expected to permit normal kinematics, with cruciate-retaining fixed type. We performed computer simulation using finite element analyses (FEA) and mechanical tests using knee simulator to measure the force of constraint regarding anterior-posterior (AP) and internal-external (IE) rotational direction in extension position, 90-degree flexion and a maximum flexion of 140-degree. In the FEA, Young's modulus and Poisson's ratio were set to 213 GPa and 0.3 for Co-Cr-Mo alloy as the femoral component, and 1 GPa and 0.3 for UHMWPe as the tibial insert, respectively. The force load to AP direction of tibial tray was measured when the femoral component moved plus or minus 10 millimeters. The moment load to IE rotational direction of tibial tray was measured when the femoral component moved plus or minus 20 degrees. The vertical load of 710 N was loaded on the femoral component during these measurements. Results. Regarding AP direction, the results of FEA showed 506 N (0-degree), 421 N (90-degree), and 389 N (140-degree) as the maximum load for anterior direction, and 152 N (0-degree), 166 N (90-degree), and 174 N (140-degree) for posterior direction. The results of mechanical tests showed 463 N (0-degree), 387 N (90-degree), and 332 N (140-degree) as the maximum load for anterior direction, and 108 N (0-degree), 121 N (90-degree), and 197 N (140-degree) for posterior direction [Fig. 1]. As the maximum moment load to IE rotational direction, the results of FEA showed 7.0 N-m (0-degree), 6.6 N-m (90-degree), and 5.5 N-m (140-degree) to tibial internal rotation of femoral component, and 9.5 N-m (0-degree), 8.1 N-m (90-degree), and 5.5 N-m (140-degree) to tibial external rotation of femoral component. The results of mechanical tests showed 4.5 N-m to tibial internal rotation of femoral component in all position, 8.6 N-m (0-degree), 6.5 N-m (90-degree), and 5.2 N-m (140-degree) to tibial external rotation of femoral component [Fig. 2]. Discussion. The force to AP direction of constraint for posterior was obviously lower than one for anterior. The torque to IE rotation for tibial internal rotation was lower or equal than tibial external rotation. These results suggest that this total knee system permits femoral rollback and tibial internal rotation with medial pivot pattern, which is required to achieve high functional performance. Furthermore, computer simulation can be a good method in this evaluation for their consistency


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 62 - 62
1 Dec 2013
Gao B Angibaud L
Full Access

Introduction. Total knee arthroplasty (TKA) prostheses are semi-constrained artificial joints. A well-functioning TKA prosthesis should be designed with a good balance between stability and mobility, meaning the femorotibial constraint of the artificial joint should be appropriate for the device's function. To assess the constraint behavior of a TKA prosthesis, physical testing is typically required, and an industrial testing standard has been developed for this purpose [1]. Computer simulation has become increasingly useful in many industries, including medical device research and development where finite element analysis (FEA) has been extensively used in stress analysis and structural evaluation. This study presents an FEA-based simulation to evaluate the femorotibial constraint behavior of TKA prosthesis, and demonstrated the effectiveness of the method by validating through physical testing. Methods. A Cruciate Retaining (CR) TKA prosthesis design (Optetrak Logic CR, Exactech, USA) was used in this study. CAD models of the implants assembled at 0° of flexion were used for the simulation. Finite element models were generated using with all materials assumed linear elastic. Boundary conditions were set up according to the ASTM F1223 standard (Figure 1). The tibial baseplate was fixed distally. A constant compressive force (710 N) was applied on the femoral component. Nonlinear Surface-Surface-Contact was defined at the femorotibial articulating surfaces. Coefficient of friction was determined from physical test. The femoral component was driven under a displacement-controlled scheme to slide along the anterior-posterior (AP) direction on the tibial insert. At each time step, constraint force occurring at the articulating surface was derived from the reaction force at the distal fixation of the tibial baseplate. A nonlinear FEA solver (NX Nastran SOL601, Siemens, USA) was used to solve the simulation. In addition, five samples of the prostheses were physically tested, and the results were compared with the simulation. Results. The simulation successfully captured the movement of contact location and pressure along the movement of the femoral component (Figure 2). The force-displacement curve predicted by the simulation exhibited a very close hysteresis loop profile as the results of physical testing (Figure 3). Using the curve slope from 0 to 5 mm to characterize the linear constraint, the simulation predicted 45.7 N/mm anteriorly and 36.4 N/mm posteriorly, which are less than 10% different from the physical testing results (46.4 N/mm anteriorly and 39.6 N/mm posteriorly). Discussion/Conclusion. This study demonstrated that the simulation was able to closely predict the femorotibial constraint behavior of the TKA prosthesis under ASTM F1223 testing. The simulation results resembled the physical testing results not only in the general curve profile but also in the magnitude of slope values. The increased difference at the far anterior region could be related to the fact that no material nonlinearity was currently considered, which could be improved in future studies. A validated simulation method could be very useful in TKA prosthesis design. Since no physical prototypes are required, design evaluation and optimization can be achieved in a much easier and faster manner


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 192 - 192
1 Mar 2010
Mann T Noble P
Full Access

Introduction: The ten-year survivorship of Oxford Unicompartmental Knee Arthroplasty (OUKA) has ranged from 98% in the hands of the developers to only 82–90% in reports from independent centers and national registries. This study was performed to investigate the effects of surgeon training and correct patient selection on the expected outcome of this procedure. Methods: We created a computer-simulated joint registry consisting of 20 surgeons who performed OUKA on 1,000 patients. Mathematical models of the patient and surgeon populations and corresponding hazard functions were formulated using data from the Swedish and Australian joint registries. The long-term survivorship of UKA was assumed to average 94% at 10 years and was modeled as the product of hazard functions quantifying risk factors under the surgeon’s control, risk factors presented by the patient, and the inherent revision risk of the procedure. We performed four simulations looking at the effect of surgeon training by pairing surgeons and patients based on surgeon experience and patient risk factors. Results: When experienced surgeons (> 40 cases) performed OUKA on low risk patients (bottom quintile), the revision rate dropped from 6.0% to 4.5%. The same surgeons had a revision rate of 7.5% when assigned to the highest risk patient group (top quintile). Conversely, when the least experienced surgeons (< 10 cases) selected the least fit patients, the revision rate increased from 6% to 8.25%. However, when these surgeons were assigned to the lowest risk group, only 5.25% of patients were revised. Taken simultaneously, these results indicate that the overall revision rate of this procedure can vary between 4.5% to 8.25%, depending upon the experience of the surgeon and the patients selected. Conclusions:. Mathematical models of patients and surgeons can be built using joint registry data. These models can then be used in a computer simulation yielding results comparable to what has been reported in the literature. The outcome of Oxford UKA is primarily determined by the skill of the surgeon in selecting suitable patients rather than operative experience. Attempts to expand indications for new procedures should be moderated by concerns that the favorable results from pioneering centers may be due to the judgment and experience of the developers as much as their technical skill in performing the procedure


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 134 - 134
1 Jan 2016
Kuwashima U Tashiro Y Okazaki K Mizu-uchi H Hamai S Okamoto S Iwamoto Y
Full Access

«Purpose». High tibial osteotomy (HTO) is a useful treatment option for osteoarthritis of the knee. Closing-wedge HTO (CW-HTO) had been mostly performed previously, but the difficulties of surgical procedure when total knee arthroplasty (TKA) conversion is needed are sometimes pointed out because of the severe deformity in proximal tibia. Recently, opening-wedge HTO (OW-HTO) is becoming more popular, but the difference of the two surgical techniques about the influence on proximal tibia deformity and difficulties in TKA conversion are not fully understood. The purpose of this study was to compare the influence of two surgical techniques with CW-HTO and OW-HTO on the tibial bone deformity using computer simulation and to assess the difficulties when TKA conversion should be required in the future. «Methods». In forty knees with medial osteoarthritis, the 3D bone models were created from the series of 1 mm slices two-dimensional contours using the 3D reconstruction algorithm. The 3-D imaging software (Mimics, materialize NV, Leuven, Belgium) was applied and simulated surgical procedure of each CW-HTO and OW-HTO were performed on the same knee models. In CWHTO, insertion level was set 2cm below the medial joint line [Fig.1]. While in OW-HTO, that was set 3.5cm below the medial joint line and passed obliquely towards the tip of the fibular head [Fig.2]. The correction angle was determined so that the postoperative tibiofemoral angle would be 170 degrees. The distance between the center of resection surface and anatomical axis, and the angle of anatomical axis and mechanical axis were measured in each procedure. Secondly, a simulated TKA conversion was operated on the each tibial bone models after HTO [Fig.3]. The distance between the nearest points of tibial implant and lateral cortical bone was assessed as the index of the bone-implant interference. «Results». The distance between the center of resection surface and anatomical axis was significantly shifted to the lateral side in CW group (0.62 ±2.95 mm lateral shift) than in OW group (0.93 ± 3.68 mm medial shift) (P<0.01). The angle of anatomical axis and mechanical axis was significantly increased in the CW group (CW: 0.77 ± 0.79 degree, OW: 0.49 ± 0.83 degree, P<0.01). In the simulation of TKA conversion, if thickness of the lateral cortical bone was 3mm, it was showed that the tibial implant was more interfered with the lateral cortical bone in CW group (2.77 ± 1.38 mm) than in OW group (4.32 ± 1.61 mm) (P<0.01). «Conclusions». The results suggested that bone deformity in proximal tibia after HTO might affect the difficulty of TKA conversion, particularly in the case of CWHTO


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 50 - 50
1 Mar 2006
Malik A Nicols S Pearse M Bitsakos C Amis A Phillips C Radford W Banks L
Full Access

Aim: A study to compare bone remodeling (BMD changes) around the femoral component of a cemented and uncemented THR using DXA scan and Finite element analysis and to check the predictive value of remodelling simulations as a pre-clinical implant testing tool. Methods: Twenty patients were recruited, ten for each implant type (Exeter and ABG-II). All volunteers underwent unilateral hip replacement. No patient had any metabolic bone disease or were on medication that would alter BMD. Each patient had a preopera-tive CT scan of the hip, in order to provide 3D bone shape and density data needed to construct a computer model. Each patient’s changes of BMD over a period of 12 months postoperatively were evaluated in a series of 4 follow-up DXA scans taken at 3 weeks, 3, 6 and 12 months post-op. For the computer simulation, Finite Element (FE) models of the affected femur were constructed for each patient and BMD changes predicted using strain adaptive bone remodelling theory. These patients were clinical followed up to access the hip scores (Merle d’Aubigne Postel). Results: All the patients were Charnely group A and had excellent postoperative hip scores (average pain 5.5, walking 5.4 and range of motion 5.3) The Exeter stem DXA results show bone resorption in Gruen zone 3 (2.8% on average) and 4 (3.3%) whereas there is a tendency for bone deposition at regions 1, 6 and 7 (2% on average). The ABG-II stem results show bone resorption developing at regions 7 and 4 (6% and 2% respectively) and some bone formation at region 6 (2%). The simulation results have a tendency to overestimate amounts of bone resorption (20% at region 7 for the ABG-II, 12% at region 3 for the Exeter). Conclusion: A comparison of the remodelling around a cemented and a non-cemented hip implant show important differences in the emerging patterns of adaptation. To our knowledge, very few published studies provide information on bone remodelling around cemented stems, and compare the results to those of an uncemented stem. Additionally, the simulation results suggest that these formulations can reproduce realistic patterns of bone adaptation. This study aims at providing the means for comparison and subsequent improvement of the accuracy of the simulations and thus helps develop a hip prosthesis that would led to least bone resorption


Bone & Joint Research
Vol. 10, Issue 12 | Pages 780 - 789
1 Dec 2021
Eslam Pour A Lazennec JY Patel KP Anjaria MP Beaulé PE Schwarzkopf R

Aims. In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement. Methods. Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data. Results. The stem with a rectangular neck has increased internal and external rotation with a quatrefoil cross-section compared to a cone in a cylindrical neck. Modification of the cup orientation and pelvic tilt affected the direction of projection of the cone or quatrefoil shape. The mean increase in internal rotation with a rectangular neck was 3.4° (0° to 7.9°; p < 0.001); for external rotation, it was 2.8° (0.5° to 7.8°; p < 0.001). Conclusion. Our study shows the importance of attention to femoral implant design for the assessment of prosthetic impingement. Any universal mathematical model or computer simulation that ignores each stem’s unique neck geometry will provide inaccurate predictions of prosthetic impingement. Cite this article: Bone Joint Res 2021;10(12):780–789


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 81 - 81
1 Jan 2018
Fürnstahl P Lanfranco S Leunig M Ganz R
Full Access

Severe femoral head deformities due to Perthes' disease are characterized by limitation of ROM, pain, and early degeneration, eventually becoming intolerable already in early adulthood. Morphological adaptation of the acetabulum is substantial and complex intra- and extraarticular impingement sometimes combined with instability are the underlying pathologies.

Improvement is difficult to achieve with classic femoral and acetabular osteotomies. Since 15 years we have executed a head size reduction. With an experience of more than 50 cases no AVN of the femoral head was recorded. In two hips fracture of the medial column of the neck has been successfully treated with subsequent screw fixation. The clinical mid-term results are characterized by substantial increase of hip motion and pain reduction.

Surgical goal is to obtain a smaller head, well contained in the acetabulum. It should become as spherical as possible and the gliding surface should be covered with best available cartilage. Together, it has to be accomplished under careful consideration of the blood supply to the femoral head. In the majority of cases acetabular reorientation is necessary to optimize joint stability.

Femoral head segment resections without guidance is difficult. Therefore, 3D-simulation for cut direction and segment size including the implementation of the resultant osteotomy configuration was developed using individually manufactured cutting jigs. First experience in five such cases have revealed good results. The forthcoming steps are the improvement of computer algorithm and automation. Goal is that with first cut decision the other cuts are automatically determined resulting in optimal head size and sphericity.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 111 - 111
1 Mar 2008
Dunbar M Blake J VanBerkel P Molloy L Hennigar A
Full Access

Data from the wait list management system and hospital databases was used to develop a computer model simulating the resource requirements required during patient flow into, through, and out of orthopaedic surgery for TKR, THR and knee arthroscopy. Results from the simulation model suggested that inpatient beds, rather than operating room time was the constraining resource and an extra twenty-five beds and 30% more OR time would stabilize and subsequently reduce the wait time at the institution. In addition, simulations suggested that pooling surgeon wait lists reduced patient wait time. Simulation models are an effective resource allocation decision-making tool for orthopaedic surgery.

To develop and implement a wait list simulation model to analyze the existing system and guide resource allocation decision-making at the QEII Health Sciences Centre.

The simulation model suggests an immediate increase in inpatient surgical beds from sixty-six to ninety-one followed by a 30% increase in OR time in thirty months to stabilize and subsequently reduce patient wait times.

Simulations showed that pooling surgeon waiting lists reduced patient wait time, however, dividing orthopaedics resources among two facilities had little effect. Adding twenty-five beds reduced the wait time growth rate substantially, but not to zero, while adding fifty beds reduced the wait time growth rate to zero. Adding twenty-five beds and 30% more OR time had the same result as adding fifty beds.

Simulation models can be effective for guiding resource allocation decisions for orthopaedic surgery. Recommendations based on the wait list simulation model results were immediately adopted by the provincial Department of Health.

A simulation model of the orthopaedic surgery system at the institution was created using Arena simulation software. Empirical statistical distributions were developed based on Wait List Management System and administrative data to assign values to model variables: number of patient referrals seen per office session; proportion of patient referrals actually converting to a surgery booking; type of procedure required; admission status; time required for surgery; and length of stay. The model was tested, and validated. Several scenarios with adjusted levels of resources variables (OR time, number of surgeons, length of stay, inpatient bed availability) were simulated.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 101 - 101
1 Aug 2013
Tsukeoka T
Full Access

Introduction

The midcortical line, the midline between the anterior and the posterior cortical walls has been reported as an intraoperative reference guide for reproducing the true femoral anteversion in cross-sectional computed tomography (CT) image study but we suspected that the version of the midcortical line on the cutting surface is different from that on the axial image. The three-dimensional (3D) CT-based preoperative planning software for THA enabled us to evaluate the cut surface of the femoral neck osteotomy. When we planned the straight non-anatomic stem placement in 20° of anteversion, we noticed that the line connecting the trochanteric fossa and the middle of the medial cortex of the femoral neck (T line) was coincident with the component torsion in almost all cases except those involving secondary osteoarthritis of the hip. Therefore we hypothesised that the T-line would provide an accurate reference guide for anteversion of the femoral component in THA. We performed this study to answer the question: which is the better intraoperative reference guide for reproducing the true femoral anteversion, the midcortical line or the T line?

Materials and methods

The institutional review board allowed a retrospective review of CT images of 33 normal femora (33 patients) in our CT database. We performed virtual THA using the non-anatomic straight stem on the 3D CT-based preoperative planning software at the two different cutting heights of 10mm or 15mm above the lesser trochanter. The anteversion of the stem implanted parallel to the T line or the midcortical line was measured. The true femoral neck anteversion was measured using the single CT slice method reported by Sugano.


Bone & Joint Research
Vol. 8, Issue 3 | Pages 126 - 135
1 Mar 2019
Sekiguchi K Nakamura S Kuriyama S Nishitani K Ito H Tanaka Y Watanabe M Matsuda S

Objectives. Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. Methods. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle. Results. The femur was positioned more medially relative to the tibia, with increasing varus alignment of the tibial component. Medial/lateral (ML) translation was smallest in the 2° varus model. A greater posterior slope posteriorized the medial condyle and increased anterior cruciate ligament (ACL) tension. ML translation was increased in the > 7° posterior slope model and the 0° model. Conclusion. The current study suggests that the preferred tibial component alignment is between neutral and 2° varus in the coronal plane, and between 3° and 7° posterior slope in the sagittal plane. Varus > 4° or valgus alignment and excessive posterior slope caused excessive ML translation, which could be related to feelings of instability and could potentially have negative effects on clinical outcomes and implant durability. Cite this article: K. Sekiguchi, S. Nakamura, S. Kuriyama, K. Nishitani, H. Ito, Y. Tanaka, M. Watanabe, S. Matsuda. Bone Joint Res 2019;8:126–135. DOI: 10.1302/2046-3758.83.BJR-2018-0208.R2


Bone & Joint Open
Vol. 5, Issue 10 | Pages 858 - 867
11 Oct 2024
Yamate S Hamai S Konishi T Nakao Y Kawahara S Hara D Motomura G Nakashima Y

Aims

The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy.

Methods

We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 43 - 51
1 Jan 2017
Nakamura S Tian Y Tanaka Y Kuriyama S Ito H Furu M Matsuda S

Objectives

Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments.

Materials and Methods

Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 50 - 50
1 Oct 2019
Matsuda S Nishitani K
Full Access

Introduction. The relationship between sagittal component alignment on clinical outcomes has not fully evaluated after TKA. This study evaluated the effect of sagittal alignment of the components on patient function and satisfaction as well as kinematics and kinetics. Methods. This study included 148 primary TKAs with cruciate-substituting prosthesis for primary OA. With post-operative lateral radiograph, femoral component flexion angle (γ) and tibial component posterior slope angle (90-σ) was measured. The patients was classified into multiple groups by every three degrees. Patient satisfaction in 2011KSS among groups were analyzed using one-way analysis of variance. By representing the component position which showed poor clinical outcomes, computer simulation analysis was performed, in which kinematics and kinetics in squatting activity were investigated. Results. The femoral component flexion angle was 4.3 ± 3.3°, and tibial component posterior slope angle was 4.5 ± 3.4°, in average. Patients whose femoral component was implanted more than 9 degrees flexion showed lower satisfaction (Figure). There was no difference in satisfaction according to tibial component angle. Computer simulation analysis showed that excessive flexed position caused no remarkable abnormal kinematics, but increased maximum contact force in medial compartment (1097 N to 1711 N), and femoral component down-size did not fully decrease the contact force (1330 N). Similarly, increase of the maximum ligament force in medial collateral ligament (MCL) (188 N to 671 N) was observed in excessive flexed position, and femoral component downsize (343 N) did not fully recovered the ligament force. Conclusion. Excessive flexion of the femoral component showed poor satisfaction. In computer simulation, increase of the contact force of the medial compartment and MCL was observed in computer simulation. For figures, tables, or references, please contact authors directly


Bone & Joint Research
Vol. 9, Issue 11 | Pages 761 - 767
1 Nov 2020
Hada M Mizu-uchi H Okazaki K Murakami K Kaneko T Higaki H Nakashima Y

Aims. This study aims to investigate the effects of posterior tibial slope (PTS) on knee kinematics involved in the post-cam mechanism in bi-cruciate stabilized (BCS) total knee arthroplasty (TKA) using computer simulation. Methods. In total, 11 different PTS (0° to 10°) values were simulated to evaluate the effect of PTS on anterior post-cam contact conditions and knee kinematics in BCS TKA during weight-bearing stair climbing (from 86° to 6° of knee flexion). Knee kinematics were expressed as the lowest points of the medial and lateral femoral condyles on the surface of the tibial insert, and the anteroposterior translation of the femoral component relative to the tibial insert. Results. Anterior post-cam contact in BCS TKA was observed with the knee near full extension if PTS was 6° or more. BCS TKA showed a bicondylar roll forward movement from 86° to mid-flexion, and two different patterns from mid-flexion to knee extension: screw home movement without anterior post-cam contact and bicondylar roll forward movement after anterior post-cam contact. Knee kinematics in the simulation showed similar trends to the clinical in vivo data and were almost within the range of inter-specimen variability. Conclusion. Postoperative knee kinematics in BCS TKA differed according to PTS and anterior post-cam contact; in particular, anterior post-cam contact changed knee kinematics, which may affect the patient’s perception of the knee during activities. Cite this article: Bone Joint Res 2020;9(11):761–767


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 47 - 47
1 Jan 2016
Mizu-uchi H Okazaki K D'Lima D Hamai S Okamoto S Iwamoto Y Matsuda S
Full Access

Introduction. Using the tibial extramedullary guide needs meticulous attention to accurately align the tray in total knee arthroplasty (TKA). We previously reported the risk for varus tray alignment if the anteroposterior (AP) axis of the ankle was used for the rotational direction of the guide. The purpose of our study was to determine whether aligning the rotational direction of the guide to the AP axis of the proximal tibia reduced the incidence of varus tray alignment when compared to aligning the rotational direction of the guide to the AP axis of the ankle. Materials and Methods. Clinical Study. A total of 80 osteoarthritis (OA) knees after posterior stabilized TKA were recruited in this study. From 2002 to 2004, the rotational alignment of the guide was adjusted to the AP axis of the ankle (Method A: Figure 1, N = 40 knees). After 2005, the rotational alignment of the guide was adjusted to the AP axis of the proximal tibia (Method B: Figure 1, N = 40 knees). The AP axis of the proximal tibia was defined as the line connecting the middle of the attachment of the PCL and the medial third border of the attachment of the patellar tendon. The guide was set at a level of 10 mm distal to the lateral articular surface. Postoperative alignment was compared between the two groups using full-lengthanteroposterior radiograph. Computer simulation. Computer simulation was performed to determine the effect of ankle rotation on tibial tray alignment, using three-dimensional bone and skin model reconstructed from CT images of 75 OA knees (Figure 2). The position of the distal end of the guide in Method B was evaluated on the coronal plane perpendicular to the AP axis of the proximal tibia and of the ankle respectively. <Displacement> was the distance from the distal end of the guide to the midpoint-malleolar points (+: medial position). <Distance ratio> was the ratio of <Displacement> dividing by the entire width of the malleolar. Results. The results of the postoperative alignment for both methods from the clinical study are shown in Table 1. The number of the knees with more than 3 degrees of varus aligned tibial component significantly decreased with the Method B from the Method A. The computer simulation showed that the position of the guide varied great among individuals in the direction of the AP axis of the ankle joint. Discussion. When an extramedullary alignment guide is used in TKA, a rotational mismatch between the proximal part of the tibia and the ankle joint can induce a varus alignment of the tibial component. Computer simulation also supported our conclusion that the surgeon should not evaluate the distal end of the guide in the direction of the ankle joint to minimize the effects of anatomic variation for proper coronal alignment


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 1 - 1
11 Apr 2023
Mischler D Knecht M Varga P
Full Access

Surgical education of fracture fixation biomechanics relies mainly on simplified illustrations to distill the essence of the underlying principles. These mostly consist of textbook drawings or hands-on exercises during courses, both with unique advantages such as broad availability and haptics, respectively. Computer simulations are suited to bridge these two approaches; however, the validity of such simulations must be guaranteed to teach the correct aspects. Therefore, the aim of this study was to validate finite element (FE) simulations of bone-plate constructs to be used in surgical education in terms of fracture gap movement and implant surface strain. The validation procedure was conducted in a systematic and hierarchical manner with increasing complexity. First, the material properties of the isolated implant components were determined via four-point bending of the plate and three-point bending of the screw. Second, stiffness of the screw-plate interface was evaluated by means of cantilever bending to determine the properties of the locking mechanism. Third, implant surface strain and fracture gap motion were measured by testing various configurations of entire fixation constructs on artificial bone (Canevasit) in axial compression. The determined properties of the materials and interfaces assessed in these experiments were then implemented into FE models of entire fixation constructs with different fracture width and screw configurations. The FE-predicted implant surface strains and fracture gap motions were compared with the experimental results. The simulated results of the different construct configurations correlated strongly with the experimentally measured fracture gap motions (R. 2. >0.99) and plate surface strains (R. 2. >0.95). In a systematic approach, FE model validation was achieved successfully in terms of fracture gap motion and implant deformation, confirming trustworthiness for surgical education. These validated models are used in a novel online education tool OSapp (. https://osapp.ch/. ) to illustrate and explain the biomechanical principles of fracture fixations in an interactive manner


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 76 - 76
19 Aug 2024
Cook SD Patron LP Salkeld SL Nolan LP Lavernia CJ
Full Access

Dislocation after total hip replacement (THR) is a devastating complication. Risk factors include patient and surgical factors. Mitigation of this complication has proven partially effective. This study investigated a new innovating technique to decrease this problem using rare earth magnets. Computer simulations with design and magnetic finite element analysis software were used to analyze and quantitate the forces around hip implants with embedded magnets into the components during hip range of motion. N52 Neodymium-Iron-Boron rare earth magnets were sized to fit within the existing acetabular shells and the taper of a hip system. Additionally, magnets placed within the existing screw holes were studied. A 50mm titanium acetabular shell and a 36mm ceramic liner utilizing a taper sleeve adapter were modeled which allowed for the use of a 12mm × 5mm magnet placed in the center hole, an 18mm × 15mm magnet within the femoral head, and 10mm × 5mm magnets in the screw holes. Biomechanical testing was also performed using in-vitro bone and implant models to determine retention forces through a range of hip motion. The novel system incorporating magnets generated retentive forces between the acetabular cup and femoral head of between 10 to 20 N through a range of hip motion. Retentive forces were stronger at the extreme position hip range of motion when additional magnets were placed in the acetabular screw holes. Greater retentive forces can be obtained with specially designed femoral head bores and acetabular shells specifically designed to incorporate larger magnets. Mechanical testing validated the loads obtained and demonstrated the feasibility of the magnet system to provide joint stability and prevent dislocations. Rare earth magnets provide exceptional attractive strength and can be used to impart stability and prevent dislocation in THR without the complications and limitations of conventional methods


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 97 - 97
11 Apr 2023
Milakovic L Dandois F Fehervary H Scheys L
Full Access

This study aims to create a novel computational workflow for frontal plane laxity evaluation which combines a rigid body knee joint model with a non-linear implicit finite-element model wherein collateral ligaments are anisotropically modelled using subject-specific, experimentally calibrated Holzpfel-Gasser-Ogden (HGO) models. The framework was developed based on CT and MRI data of three cadaveric post-TKA knees. Bones were segmented from CT-scans and modelled as rigid bodies in a multibody dynamics simulation software (MSC Adams/view, MSC Software, USA). Medial collateral and lateral collateral ligaments were segmented based on MRI-scans and are modelled as finite elements using the HGO model in Abaqus (Simulia, USA). All specimens were submitted varus/valgus loading (0-10Nm) while being rigidly fixed on a testing bench to prevent knee flexion. In subsequent computer simulations of the experimental testing, rigid bodies kinematics and the associated soft-tissue force response were computed at each time step. Ligament properties were optimised using a gradient descent approach by minimising the error between the experimental and simulation-based kinematic response to the applied varus/valgus loads. For comparison, a second model was defined wherein collateral ligaments were modelled as nonlinear no-compression spring elements using the Blankevoort formulation. Models with subject-specific, experimentally calibrated HGO representations of the collateral ligaments demonstrated smaller root mean square errors in terms of kinematics (0.7900° +/− 0.4081°) than models integrating a Blankevoort representation (1.4704° +/− 0.8007°). A novel computational workflow integrating subject-specific, experimentally calibrated HGO predicted post-TKA frontal-plane knee joint laxity with clinically applicable accuracy. Generally, errors in terms of tibial rotation were higher and might be further reduced by increasing the interaction nodes between the rigid body model and the finite element software. Future work should investigate the accuracy of resulting models for simulating unseen activities of daily living


Bone & Joint Research
Vol. 8, Issue 8 | Pages 357 - 366
1 Aug 2019
Lädermann A Tay E Collin P Piotton S Chiu C Michelet A Charbonnier C

Objectives. To date, no study has considered the impact of acromial morphology on shoulder range of movement (ROM). The purpose of our study was to evaluate the effects of lateralization of the centre of rotation (COR) and neck-shaft angle (NSA) on shoulder ROM after reverse shoulder arthroplasty (RSA) in patients with different scapular morphologies. Methods. 3D computer models were constructed from CT scans of 12 patients with a critical shoulder angle (CSA) of 25°, 30°, 35°, and 40°. For each model, shoulder ROM was evaluated at a NSA of 135° and 145°, and lateralization of 0 mm, 5 mm, and 10 mm for seven standardized movements: glenohumeral abduction, adduction, forward flexion, extension, internal rotation with the arm at 90° of abduction, as well as external rotation with the arm at 10° and 90° of abduction. Results. CSA did not seem to influence ROM in any of the models, but greater lateralization achieved greater ROM for all movements in all configurations. Internal and external rotation at 90° of abduction were impossible in most configurations, except in models with a CSA of 25°. Conclusion. Postoperative ROM following RSA depends on multiple patient and surgical factors. This study, based on computer simulation, suggests that CSA has no influence on ROM after RSA, while lateralization increases ROM in all configurations. Furthermore, increasing subacromial space is important to grant sufficient rotation at 90° of abduction. In summary, increased lateralization of the COR and increased subacromial space improve ROM in all CSA configurations. Cite this article: A. Lädermann, E. Tay, P. Collin, S. Piotton, C-H Chiu, A. Michelet, C. Charbonnier. Effect of critical shoulder angle, glenoid lateralization, and humeral inclination on range of movement in reverse shoulder arthroplasty. Bone Joint Res 2019;8:378–386. DOI: 10.1302/2046-3758.88.BJR-2018-0293.R1