During total knee arthroplasty (TKA), a tourniquet is often used intraoperatively. There are proposed benefits of tourniquet use including shorter duration of surgery, improved surgical field visualization and increased cement penetration which may improve implant longevity. However, there are also cited side effects that include increased post-operative pain, slowed recovery, skin bruising, neurovascular injury and quadriceps weakness. Randomized controlled trials have demonstrated no differences in implant longevity, however they are limited by short follow-up and small sample sizes. The objective of the current study was to evaluate the rates of revision surgery among patients undergoing cemented TKA with or without an intraoperative tourniquet and to understand the causes and risk factors for failure. A retrospective cohort study was undertaken of all patients who received a primary, cemented TKA at a high-volume arthroplasty centre from January 1999 to December 2010. Patients who underwent surgery without the use of a tourniquet and those who had a tourniquet inflated for the entirety of the case were included. The causes and timing of revision surgery were recorded and cross referenced with the Canadian Institute of Health Information Discharge Abstract Database to reduce the loss to follow-up. Survivorship analysis was performed with the use of Kaplan-Meier curves to determine overall survival rates at final follow-up. A Cox proportional hazards model was utilized to evaluate independent predictors of revision surgery. Data from 3939 cases of primary cemented TKA were available for analysis. There were 2276 (58%) cases in which a tourniquet was used for the duration of the surgery and 1663 (42%) cases in which a tourniquet was not utilized. Mean time from the primary TKA was 14.7 years (range 0 days - 22.8 years) when censored by death or revision surgery. There were 150 recorded revisions in the entire cohort, with periprosthetic joint infection (n=50) and aseptic loosening (n=41) being the most common causes for revision. The cumulative survival at final follow-up for the tourniquetless group was 93.8% at final follow-up while the cumulative survival at final follow-up for the tourniquet group was 96.9% at final follow-up. Tourniquetless surgery was an independent predictor for all-cause revision with an HR of 1.53 (95% CI 1.1, 2.1, p=0.011). Younger age and male sex were also independent factors for all cause revision. The results of the current study demonstrate higher all-cause revision rates with tourniquetless surgery in a large cohort of patients undergoing primary cemented TKA. The available literature consists of short-term trials and registry data, which have inherent limitations. Potential causes for increased revision rates in the tourniquetless group include reduced cement penetration, increased intraoperative blood loss and longer surgical. The results of the current study should be taken into consideration, alongside the known risks and benefits of tourniquet use, when considering intraoperative tourniquet use in cemented TKA.
Secondary osteonecrosis of the knee (SOK) generally occurs in relatively young patients in their working years; at advanced stages of SOK, the only viable surgical option is total knee arthroplasty (TKA). We conducted a retrospective study to investigate implant survivorship, clinical and radiographic outcomes, and complications of cemented TKA with/without patellar resurfacing for SOK. Thirty-eight cemented TKAs in 27 patients with non-traumatic SOK with a mean age 43 years (range 17–65) were retrospectively reviewed. Twenty-one patients (78%) were female. Mean body mass index was 31 kg/m2 (range 20–48); 11 patients (41%) received bilateral TKAs. Twenty patients (74%) had a history of corticosteroid use and 18% had a history of alcohol abuse. Patellar osteonecrosis was coincidentally found in six knees (16%), all of which had no anterior knee pain and had no patellofemoral joint collapse. The mean follow-up was 7 years (range 2–12). Knee Society Score (KSS) and radiographic outcomes were evaluated at 6 weeks, 1 year, then every 2–3 years thereafter.Background
Methods
Recent total knee arthroplasty (TKA) designs have featured more anatomic morphologies and shorter tibial keels. However, several reports have raised concerns regarding the impact of these modifications on implant longevity. This study's purpose is to report the early performance of a modern, cemented TKA design. All patients who received a primary, cemented TKA from 2012 to 2017 with a minimum two-year follow-up were included. This implant features an asymmetric tibial baseplate and a shortened keel. Patient demographics, Knee Society Scores (KSS), and component alignment were recorded, and Kaplan-Meier survivorship analyses were performed.Introduction
Methods
Early revision after total knee arthroplasty (TKA) is fortunately uncommon. However, instability and lack of fixation are common early failure mechanisms. Cement techniques utilizing lavage and multiple drill hole interdigitation of the resected tibial surface can reduce micromotion and produce reliable tibial component fixation. This study looks at clinical failure mechanisms, cement technique and polyethylene damage in patients needing early revision of cemented TKA. PCL-retaining TKA with cement fixation was performed on >
1000 patients at a single institution. Cement techniques varied with surgeon, with some using lavage and drill hole preparation of the resected surface and others electing to cement the surface “as cut”. Seventeen patients were revised within three years of follow-up. Revision reasons included loosening (41%), instability (18%), infection (24%), pain (12%), and malposition (6%). Prospective outcome scores, radiographic data, revision reasons, and polyethylene wear were compared. Pre-revision pain and function scores gradually decreased back to pre-operative levels. Leg alignment averaged 7° varus (nine patients) and 12° valgus (eight patients) pre-operatively and 5° valgus at pre-revision. Tibial radiolucent lines were present medially only in nine knees and medially and laterally in four knees. The majority of patients revised for loosening had a tibial component cemented onto the “as cut” bone without additional preparation. Damage covered 32%-85% of the polyethylene articular surface. Scratching and pitting were significantly correlated (p<
0.05) with shorter in-situ time and revision for instability and loosening. Alignment and outcome scores were not correlated with damage. In this series of cemented TKA, loosening and instability accounted for 59% of the early failure, similar to the incidence previously reported for cementless TKA. Cement technique and component positioning, not polyethylene wear, were the primary contributing factors. Attention to ligament balancing and achieving better tibial component fixation is needed to further limit the incidence of early failure after cemented TKA.
Current clinical practice in total knee arthroplasty (TKA) is largely based on metal on polyethylene bearing couples. A potential adverse effect of the stiff metal femoral component is stress shielding, leading to loss of bone stock, periprosthetic bone fractures and eventually aseptic loosening of the component. The use of a polymer femoral component may address this problem. However, a more flexible material may also have consequences for the fixation of the femoral component. Concerns are raised about its expected potential to introduce local stress peaks on the interface. The objective of this study was to analyze the effect of using a polyether-etherketone (PEEK-Optima®) femoral component on the cement-implant interface. We analyzed the interface stress distribution occurring during normal gait, and compared this to results of a standard CoCr component. An FEA model was created, consisting of a femoral component cemented onto a femur, and a polyethylene tibial component. A standard loading regime was applied mimicking an adapted gait cycle, according to ISO14243-1. The implant-cement interface was modelled as a zero-thickness layer connecting the implant to the cement layer. Femoral flexion/extension was prescribed for the femur in a displacement controlled manner, while the joint loads were applied to pivoting nodes attached to the tibial construct, consistent with the ISO standard. Implant-cement interface properties were adopted from a previous study on CoCr interface debonding[1].Introduction
Materials and methods
There is no question that at some point many TKAs will be cementless-the question is when. The advantages of cementless TKA include a shorter operative time, no need for a tourniquet, more suitability for MIS, no concern for cement extrusion, and the history of THA. The concerns for cementless TKA include the history to date with cementless TKA (tibia and metal-backed patella), variable bony substrate, surgical cut precision, cost, revision concerns, and the patella (for patella component resurfacers).
Introduction.
Objective. A study was performed in a tertiary health care centre to evaluate outcomes of arthroplasty in Indian Population. Various factors which may affect knee flexion after surgery were also evaluated. Methods. 82 patients with 60 unilateral & 22 bilateral total knee arthroplasties were included in the study. Assessment was done as per knee society knee score and function score. A simple functional questionaire including ability to squat, ability to sit cross leg, kneel while prayers, ability to use Indian toilet was filled and patients were rated accordingly as fair, good and excellent. Results. Average improvement in knee score was from 22.88 to 91.23 and function score from 16.26 to 73.59. Average range of motion improved from 80.4 to 125 degrees. Preoperative range of motion predicted final range of motion. There was significant improvement in flexion contracture (Mean 15.3 to 1.19). There was trend of increase in range of motion with time with no further gain reported after 1 year. Age, Sex, diagnosis, BMI, tibio- femoral angle did not of affect the final outcome. A Comparison was made between total condylar prosthesis & posterior stabilized prosthesis with no significant differences of outcomes between the two. 65% were rated excellent, 30% rated good & 5% fair as per functional questionaire given to the patients. Conclusion.
INTRODUCTION.
The aim of this study was to compare the clinical outcomes of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) during the first six weeks and at one year postoperatively. A per protocol analysis of 76 patients, 43 of whom underwent TKA and 34 of whom underwent bi-UKA, was performed from a prospective, single-centre, randomized controlled trial. Diaries kept by the patients recorded pain, function, and the use of analgesics daily throughout the first week and weekly between the second and sixth weeks. Patient-reported outcome measures (PROMs) were compared preoperatively, and at three months and one year postoperatively. Data were also compared longitudinally and a subgroup analysis was conducted, stratified by preoperative PROM status.Aims
Methods
The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery. An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups.Aims
Methods
Initial stability of tibial trays is crucial for long-term success of total knee arthroplasty (TKA) in both primary and revision settings. Rotating platform (RP) designs reduce torque transfer at the tibiofemoral interface. We asked if this reduced torque transfer in RP designs resulted in subsequently reduced micromotion at the cemented fixation interface between the prosthesis component and the adjacent bone. Composite tibias were implanted with fixed and RP primary and revision tibial trays and biomechanically tested under up to 2.5 kN of axial compression and 10° of external femoral component rotation. Relative micromotion between the implanted tibial tray and the neighbouring bone was quantified using high-precision digital image correlation techniques.Objectives
Methods